wireless

world
 OCTOBER 1981 70p

Interfacing microprocessors

Digital tape

 recorderDistinguishing 'amplifier sound'

PROFESSIONAL TOOLCASE

 :or Service Engineers 10 min mill $43^{10} 3 \wedge \lambda x+1$

wireless world

OCTOBER 1981 70p

Interfacing microprocessors
 Digital tape recorder

Distinguishing

 'amplifier sound'

wireless world

ELECTRONICS/TELEVISION/RADIO/AUDIO

ОСтоber 1981 Vol 87 No 1549

Amcron INDUSTRIAL MUSCLE

Model - M600
\star POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$
\star OUTPUTPOWER IN EXCESS OF 1.5 KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.). D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA.

HARMONIC DISTOPTION LESS THAN 05% DC-20KHz AT 1 kW INTO 6 OHMS

- PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS \star UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
- OUTPUTMATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
\star TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW .
\star INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
\star 3-YEAR PARTS AND LABOUR WARRANTY.
\star
UNITS AVAILABLE FROM $100 V A-12 K V A . ~$
For full details on all Amcron Products write or phone Chris Flack

Analogue Associates

P.O. BOX 3

ATTLEBOROUGH
NORFOLK NR17 2PF
Tel: 0953-452477

CURRENT USED
 SEE US AT TESTMEX ${ }^{\circ} 81$ STAND J8 WEMBLEY-OCTOBER 27,28,29
 Everything as new-

Hewlett Packard.

Analyser
E1950.00

OSCILLOSCOPES

5 GOOD REASONS WHY YOU SHOULD DEAL WITH ELECTRONIC BROKERS

Brokers
 TEST EOUIPMENT except the price!

SEE USAT TESTMEX 81 STAND 18 WEMBLEY-OCTOBER 27,28,29

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G
 ADD 15\% VAT TO ALL PRICES
Carriage and Packing charge extra on all items unless otherv
A copy of our Trading Condítions is available on request.

New test catalogue just
out. Send for out. Send for
your free copy your free copy
now. your f

The EP4000 is not just an EPROM Programmer . . .

Not only does the
EP4000 copy, store,
program and duplicate program and duplicate /2508/2758/2716/2516/2532 and 2732 EPROMs and 2732 EPROMs
without personality without personality
cards or modules, but cards or modules, but
also includes a video output for memory map display to make the display to make th powerful editing (and this is in addition to (and this is in addition to the in-built LED display for stand-alone use), but
with comprehensive

input/output - RS232, 20mA loop, TTL, parallel handshake, cassette, printer and direct can be expanded with our range of add-on accessories listed below.

. . . but also a Real Time EPROM Emulator ...

Real time EPROM Emulation is the second major function of the EP4000. This facility allows the machine to directly replace your incircuit EPROMs during the process of program development - the EP4000 can be configured to look like any EPROM it is capable of programming. The press of a button isolates
the external system so that data changes, entries, editing and downloading can be implemented. When the program is complete and working, the simulator cable can be replaced by an EPROM programmed by the EP4000.

. . . with real technical back-up and service.

The EP4000 comes with a technical manual describing every aspect of the machine - its purpose, its use, and how to use it. It also has a section describing the whole process of
program development.
And if you ever need technical help or advice, you can now dial direct to our technical department for instant attention - Tel. (0803) 863380.

Finally, a full range of accessories in now available - these include Bipolar programming
modules, multi-EPROM simulator adaptors, buffer pods, EPROM Erasers, video monitors, 2764/2564 programming satellite, printer and production programmers. The EP4000 is extock. Price $-£ 545+$ VAT $(+£ 12$ for DATAPOST delivery). Telephone, telex, write or call for full data and Distributor list, or place your order for immediate despatch - Overseas customers, please telex or write for quotation and terms. Agents in some countries, and distributors in Britain required.
G.P. Industrial Electronics Ltd.

Unit 6, Totnes Industrial Estate Totnes, Devon TQ9 5XL
Tel. Sales (0803) 863360. Technical (0803) 863380
Telex: 42596 GPELEC

Worth

waiting for
system which ensures fair and orderly

Your Quad

Reaction from press ESL-63 has been rapturous. Hardly surprising since the virtues of the ' 63 are so readily apparent to all but the most jaundiced listeners.

Orders are pouring in from all over the world and demand far exceeds initial supply. It is an enviable position for a manufacture to have a full order book, but frustrating for potential customers.

To alleviate the problem, we have devised an ordering
dealer has full details.
We are increasing production as quickly as possible but to do so without compromising product quality necessarily limits the rate at which this can be done. We have allocated a major portion of production to meet production to meet the U.K. market.

Of course we have to export. Quad needs the prestige and Great Britain needs the
currency.

You will have to wait to acquire a pair of Quad ESL-63s, but in these gloomy days it is comforting to be associated with another Quad, hence British, success and your patience will be rewarded by many years of listening pleasure.

...oran apology for success.

The Quad ESL-63 is well worth waiting for

QUAD埥
 for the closest approach

 to the original sound
Data recording and analysis:

SIEMENS

Sinclair ZX81 Personal Computerthe heart of a system

 that grows with you.1980 saw a genuine breakthrough the Sinclair ZX80, world's first com plete personal computer for under were sold surprisingly, over 50,000 In Marc increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers eve more advanced facilities at an even lower price. Initially, even we were 50,000 in the first 3 months!

Today, the Sinclair $Z \times 81$ is heart of a computer system. You ca add 16 -times more memory with the ZXRAM pack. The ZX Printer offer performance and price And the Software library is growing every day Lower price: higher capability teach ZX81, it's still very simple to ZX81 packs even greater working capability than the $\mathrm{ZX80}$
It uses the same micro-processor, but incorporates a new, more powe intelligence' of the computer. Th chip works in decimals, handies logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility
to load and save named programs on cassette, for example, and to drive the new $Z X$ Printer.

New
BASIC manual

Kit: £49.95

Higher specific

how's done? Quite simply, by design. The ZX80 computer from 40 or so to 21. The ZX81 reduces the 21 to 4 !
The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this the ZX80!
New, improved specification
New, improved specification
Z
Z faster version of the famous Z80 chip, widely recognised as the best ever made.

- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words own single-key entry.
- Unique syntax-check and report codes identify programming errors Full range.
Full range of mathematical and scientific functions accurate to eigh Graph-drawing and animateddisplay facilities. - Multi-dimensional string and numerical arrays.
Up to 26 FOR/NEXT loops. ames as well as serion - useful for - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack. Able to drive the new Sinclair Adva
rocessor ROM 4 -chip design: microchip - unique, custom-built chip eplacing 18 ZX80 chips.

Kit or built -it's up to you! You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other work with a fine-tipped soldering iron And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with

Kit and bu
uilt versions come com lete with all leads to connect to your TV (colour or black and white) and cassette recorder

16K-byte RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the existing expansion port at the rear of the computer to multiply your data/program storage by 16 ! Use it for long and complex programs or as a personal database of competitive additional memory With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business a Household management systems for example.

$\square \square \square$ 7×81

6 Kings Parade, Cambridge, Cambs., CB2 1SN
Tel: (0276) $66104 \& 21282$.

Available now-

 the ZX Printer
for only £49.95

 Designed exclusively for use withthe ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions. At last you can have a hard copy
of your program listings-particularly How to order your ZX81 BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. need needed coupon below. You can pay needed co
useful when writing or editing programs And of course you can print out your results for permanent records nding to a friend.
Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch. The ZXPrinter connects to the rear of your computer - using a stackable pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We wan you to be satisfied beyond doubt To: Sinclair Research Lttd, FREEPOST 7, Cambridge, CB2 1Yy.

alir Research Ltd, FREEPOST 7, Cambridge, CB2 1YY.				$\begin{gathered} \text { Orde } \\ \text { Total } \\ \vdots \end{gathered}$
Oty	Item	Code	${ }_{\varepsilon}^{\text {Item price }}$	
	Sinclair ZX81 Personal Computer kit(s). Price includes ZX81 BASIC manual, excludes mains adaptor.	12	49.95	
	Ready-assembled Sinclair ZX81 Personal Computer(s). Price includes $\mathrm{ZX81}$ BASIC manual and mains adaptor	11	69.95	
	Mains Adaptors) (600 mA at 9 VDC nominal unregulated).	10	8.95	
	16 K -BYTE RAM pack,	18	49.95	
	Sinclair $2 \times$ Printer.	27	49.95	
	8K BASIC ROM to fitz 2×80.	17	19.95	
	Post and Packing.			2.95

* enclose a cheque/postal order payable to Sinclair Research Ltd for $£$
*Please charge to my Access/Barclaycard/Trustcard account no
| "Na
Name:Mr/Mrs/Miss $\mathrm{A}_{\text {Addres }}$

WW - 005 FOR FURTHER DETAILS

New Line of Wave Solderable Heat Sinks

Thermalloy International offers 35 different styles of wave solderable heat sinks for TO-3 and plastic packages. Styles include board mounted stampings and flat sided extrusions. Solderable Stud ${ }^{\text {TW }}$ Heat Sinks allow the heat sink/device to be preassembled and treated as a single component on your Board and wave soldered with other components. Eliminates hand soldering and extra inspections to reduce your production steps by 50%. All work can now be done from one side of the board, and less mounting hardware is required.

For product samples and full technical literature contact MCP Electronics.

MCP Electronics Ltd.,
38 Rosemont Road, Alperton, Wembley, Middlesex. Telephone 01-902 5941. Telex: 923455.

Thermalloy International Advanced technology in semiconductor accessories.

THREE FOR FREE

 RnilntacEXPERIMENTOR BREADBOARDS No soldering modular breadboards, simply plug
components in and out of letter number identified nickel-silver contact tholes. Start smal and simply
snapolock boords together to build a breadiboard of snap-ock
ExP Breadboards have two bus-bars as an integral part of the board, if You need more than 2 buses
mimply snap on 4 more bus-bars with the a aid of an EX simply sn
48.
EXP 325
ExP 32551.60 The ideal breadboard
or 1 chip circuits. Accepts $8,14,16$ and
. up to 2 pin IVs. Has 130 contact points
ncluding two 10 point bus-bars.
ExP 350 f3. 15 Specially designed lor working with 4 p to 40 Pin ICS
perfect for 3814 in ICs. Has 270 contact points
EXP 300 I5.75The
orst widel. bought
read-board in the UK.
read-board in the U. ${ }^{\text {With } 550 \text { contact }}$.

points, two 40 point
bun-aras the EXP 300 will accept any size C a and up

106×14 in DPS. Use this breadboard with
Aventures in Microelectronics
EXP 600 E6.30 Most
MICROPROCESSOR projects in magazines and educationaz books
are buito on the EXP 600 .
Exp 650 E3.60 Has $.6^{\prime \prime}$ centre
saacing so is perfect tor
MiCROPROCESSOR application
 EXP 48 f2.30 Fou

THE GSC 24 HOUR SERVICE TELEPHONE (0799) 21682 With your Access, American Express, Barclaycard number and your order will be in the post immediately
LOBAL SPECIALTIES CORPORATION
\qquad
 Unit i, Shire Hiil Industrial Estate

Available from selected stockists No. 10 SOILL MOISTURE TESTER

 No. 11 DIGITAL ROULETTE The esspense and excitement of the casing
in your own home. Just press the button,
 sound of the roulettie wheel as whell, both
gradually slowing down to reveal the winning number.
No. 12 EGG TIMER
How do you like Your eggs done, hard or
soft, uust set the timer and it wil soft, just set the timer and it will sound
when the egg is done to your liking. Long

Want to get started on building exciting
projects, but don't know how? Now using Projects, but don't know how? Now using
EXPRERIMENTOR BREADBOARDS and
following the instructions in our FRE following the instructions in our FRI
'Electronoics By Numbers liatits,
ANYBODY can build electronici prop Electronics By Numbers' leaf fets,
ANBOOY can build lecertronic projects.
For example, take one of our earlier For example, take one of our
proiects, a L.E.D. Bar G raph;

$\rightarrow \longrightarrow$ Pro jects 10,11 asd and 12, stims sin and laye the te ocup oupo
your nearest GSC stockist, or send direct to us, and you will receive the latest
'ELECTRONICS BY NUMERS' leallet.
If you have missed projects, 1,2 and 3 , or 4,5
and 6 or or, 8 and 9 , please tick the appropriate
oox in the coupon.
PROTO-BOARDS
The.ultimate in breadboards for the minimum of cost.
two easily assembled kits.
 accepts up to six 14 -pin Dips.
PROTO-BOARD 6 KIT

TO RECEIVE YOUR FREE COPY OF PROJECTS 10, 11 and 12

WIRELESS WORLD OCTOBER 1981

ww - 022 FOR FURTHER DETAILS

$1000 \begin{aligned} & \text { SERIES } \\ & \text { OSCILLOSCOPES }\end{aligned}$

Telequipment 1000 Series The choice is yours

tightens time measurement accuracy to $\pm 3 \%$, with improved stability as a bonus. To match these improved tim base specifications, trigger characteristics have been substantially enhanced. Better Display The D1016A also has a new CRT The size is just the same easy-to-
view $10 \times 8 \mathrm{~cm}$ but with an internal graticule and a quick heat cathode. It has a "GY phosphor which is a near equivalent to the P31 but is more efficient entinically at low beam currents A Choice of Bandwidth A MHz or 20 MHz with 5 mV division sensitivity at full. bandwidth and 1 mV division at 5 MHz in the D1016A, 4MHz
the D1011, and a choice of display modes; Algebraic Add, True X-Y, Channel 1 and 2 , Chopped or Alternated, Channel 2 only, and Channel 2 Inverted For further details send reply coupon today.
Please send details of the -7
| P1016A \square D1010/D1011 \square |
| Name
1 Position
Company
1 Address

\qquad
Tektronix U.K. Ltd. P.O. Box 69. Harpenden, Herts AL5 4UP
Telephone: Harpenden 63141| Telephone: Harpenden 63141|
| Telex: 25559 | Telex: 25559 — — _ .

[^0]
CX80 colour MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

NRDC-AMBISONIC
 UHJ

SURROUND SOUND DECODER

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" published Intruder 1 has been redesigned by Integrex to incorporate several new features, along with improved
periormance. The kit is even easier to build. The interna audible alarm trins oft
 Complete kit $\mathbf{£ 5 2 . 5 0}$ plus VAT, or ready built and tested $\mathbf{£ 6 8 . 5 0}$ plus VAT.

\section*{| Wireless World Dolb |
| :--- |
| $\qquad \overline{3} \overline{\overline{3}}$ |}

Compleet Kit PRICE: £49.95
 All kits are carriage free

WW - 006 FOR FURTHER DETALLS
${ }_{26}$

SOUND INVESTMENT

食 Replacement tape heads from. Monolith could mean a bigimprovement in sound quality from your tape recorder. A full catalogue is available, qualice 50 p , which features a wide range of heads for cassette and reel to reel machines, as
well as replacement motors tape transports well as replacement motors, tape transports, etc.
Universal cassette heads to EIAJ standard, hole centres 7 mm apart, 12 mm from head face
$\begin{array}{ll}12.02 & \text { Mono record/playback } \\ \text { S20. } \\ \text { Stereo playback }\end{array}$
824.02
824.07

Stereo I/p for Dolby systems C42RPH04 metal tapes
high performance head
42RPS 18 Stereo twin gap IIp long life head for record
$\begin{array}{ll}\text { C21ES 18 } & \text { Monnolstereo erase head } \\ \text { C44RPHO3 } & \text { Fourchanneltrach }\end{array}$ C44RPHO3
C2ESO4
Four channel/track $/$ /p
Twin halt track erase

MONOLITH

electronic products
The Monolith Electronics Co. Ltd, $5 / 7$ Church Street
Crewkerne, Somerset TA18 7HR. Tel: 0460 74321. Telex

Dielectric Communications

Tony Chapman Electronics Limited 30a, High Street, Epping, Essex CM16 4AE

Toroidal Power Transformers

[^1]\qquad

$\Delta=\Delta$ CUE ARTA $Б D O$

Use the ARTA COS third-octave audio analyser
adaptor and an oscilloscope to display the real-time
intensity and spectral distribution of sounds. adaptor and an osciiloscope to display ue real-time
intensity and spectral distribution of sounds.
The internal pink noise generator enables the electical or electro-acoustic frequency response

Abacus Electrics 10 Barley Mow Passagee London W44PH England
Telephone: London $01-9946477$
Telex 8811418

WW - 067 FOR FURTHER DETAILS

OUTNOW!

AMBIT'S NEW CATALOGUE

In an attempt to collate and organize our burgeoning ranges of 'stock' components (now over 7000 line items), we have
at last produced a 'concise' 80 page parts catalogue to a laper produced a 'concise' 80 page parts catalogue to,
supplement the popular 'Tecknowledgey' series of 'wordy' applications catalogues, which now lists a wide range of basic
components components - as well as our unique RF and Communications
components. The World of Radio and Electronics contains everything the informed electronics user needs, at prices which we guarantee will match the lowest on the market for
equivalent product.
Prices appear on the page alongside the part numbers, and
the catalogue is now updated quarterly - available either direct from here (60 op all incc or at most newagents and
bookstalls where you can find electronics publications. as well as all the 'run-of-mill' items like resistors, capacitors, hardware, solder etc - you now have the first genuinely
complete parts source for the complete parts source for the radio, communication, elec
tronics, computer user.

Ambit International
200, North Service Road, Brentwood,
Essex CM14 4SG

Britain'sNo.Imagazine fortheradioenthusiast
"From the June issue, Practical Wireless becomes an applications of radio, incovering all the techniques and short-wave listening, DX (long-distance) broadcast listening and viewing, radio control, etc., plus the latest
wave! Learn to program.Millions of jobs are threatened but
millions will be created. Learnmilitic - the language of the small com-
Bindputer and the most easy-to-learn com-puter language in widespread use. Teachyourself with a course which takes you
from complete ignorance step-by-step tofrom complete ignorance step-by-step to
real proficiency, with a unique style ofgraded hints. In 60 straightforwardlessons you will learn the five essentials ofprogramming: problem definition,
flowcharting, coding the program,

 Also THE BASIC HANDBOOK (BHB) $\mathbf{£ 1 4 . 5 0 \text { . An encyclopaedic }}$ gide to the major BASIC dialects. A must if you use other guide to the major BASIC dialects. A must if you use other
peoples' and: ALGORITHM WRITER'S GUIDE (AWG) \&4.00 Communicate design, safetyt, legislation etc.
Electronics
Written for the student or enthusiast, this
ourse is packed with information, Book
diagrams, and questions designed to lead
you step-by-step through number
systems and Boolean algebra to
memories, counters, and simple arithmetic circuits; and finally to an tion of calculators and computers
opera-

(4 VOIS)
GUARANTEE - No risk to oou If you are not completely satisfied your moner

 ${ }^{4} 4$ O. phone us with hese credit card deailis. 0048067446 lanssaphonel 24 hour senerice.
 Please ask for prepayment invoice

Name...
Addrese

PHILIPS SCOOPS THE HONOURS WITH A NEW CONCEPT IN DIGITAL INSTRUMENTS
AWARD YOURSELF THE DMC

FOR SERVICES TO MEASUREMENT

Philips amazing new Digital Measurement Centre is so much more than an ordinary $41 / 2$-digit autoranging instrument. Just look ll these quantities which the calculating power of its
microcomputer allows the DMC measure:

* Volts, current and resistance
\star Frequency
\star Time
$\star \mathrm{dB}$ (and relative dB)
\star Peak voltage
\star Relative reference
Ł Temperature
\star Diode forward volt drop In addition, it's got 5\% longer ranges than usual, compensated current measurements and self-tes and calibration.
For a free eight-page colour leaflet about the DMC, circle Reader inquiry number 220

Test \& Measuring Instruments

ANALYSER WITH DISASSEMBLY
PM 3543 logic analyser:

* Disassembly option for a large list of popular microprocessors - costs less than a single personality module from other manufacturers.
* Logic analyser with option package covering 14 micro package covering 14 micro interface costs less than

C4,000. IEFE interface available

- Sophisticated nested triggering with additional clock and trigge qualifiers.
- Interactive 35 MHz oscilloscope

Reader inquiry number 221 for a colour brochure.

NEW
 OSCILLOSCOPE IS A DIIITAL WONDER

Philips PM 331060 MHz digita storage oscilloscope has capabilities extending way beyond traditional limits - and those of why.
1 Four memories (each 256×256) \star Four men sampling rate $\star 50 \mathrm{MHz}$ sampling rate

5 ns/division
Digital delay of -9 to 9999 divisions.
NEW COUNTERS ALSO MAKE MORE OF THE MICRO

PM 6670 family of reciproca $\star 120 \mathrm{MHz}, 550 \mathrm{MHz}$ or 1.5 GHz high resolution computing counters
Unique "counter on a chip" design and microprocessor control for maximum reliability

- Reciprocal counting at low
frequencies eliminates ± 1 cycle error. Automatic switchover to conventional counting a 10 MHz
* Continuously variable measuring time with display readout
\star Error-free triggering with noise suppression
- Choice of timebase crystal oscillators to match applications and budgets
* Facilities for cw, burst, multiple burst, frequency average and arming
* Interface options include IEEE 488/IEC 625 bus, talker/istene
- May be operated from internal battery option, mains or 11.8 to 28 VDC
Reader inquiry number 223 for a colour leaflet

MUCH MORE TO OFFER

The instruments shown in this advertisement are a small selection from the wide Philips Test and Measuring range. Circle the inquiry card numbers, listed below, to receive information about relevant product groups.
Alternatively, 'phone Cambridge (0223) 358866 and speak to our Commercial Office on extensions 145 or 148.

Inquiry No.
PM 2521 digital measurement centre
ogic analysers 3310 digital storage scilloscope
M 6670 counter family 156 counchay 00 MHz oscilloscopes
ourzos
Pulse generator
Lultimeters
counters rang
ecorders
Philips Microcomputer mips Micocomputer Audio and video Audio and video service equipme Power supplies Pye Unicam Ltd,
hilips Electronic Instruments Dept York Street, Cambridge CB1 2PX Tel (0223) 358866 Telex 817331

PHILIPS

The Sound of the Professionals
द月SHURE
Shure Electronics Limited Eccleston Road Telephone: Maidstone (0622) 59881
new SMI 85 PM(O) [EGM SOUND
brings a new dimension to a hand-held condenser microphone

This new high technology Shure microphone will change the way people think of condenser microphones. The
SM85 is designed especially for on-stage, hand-held use. Its sound is unique-far more tailored to the special needs of the vocallst: sizzling highs and a shaped mid-range for
superb vocal reproduction, and a gentle bass rolloff that minimizes handling noise and "boominess" associated with close-up use. Ultra-low distortion electronics make the SM85 highly mmune to stray hum fields. An integral, dual-
density foam windscreen provides built-in pop protection. What's more, the SM85 Condenser Microphone must pass the same ruggedness and dependability tests required of Shure dynamic microphones. As a result the
SM85 sets a new standard of reliability for hand-held condenser microphones.
The SM85 is extremely lightweight, beautifully balanced Ask your dealer for a demonstration of the new SM85 PRO TECH Sound, or write to us (ask for AL664) for full detalls.

SM85

Cardioid Condenser

 Hand-HeldProfessional Microphone

wireless world

Invention - the orphan

Editor:
TOM IVALL, MI.I.E.R.E
Deputy Editor:
PHLLIP DARRINGTON PHLLIP DARR
$01-6613039$
Technical Editor Technical Editor:
GEOFF SHORTER, B.Sc.

. $01-6613500 \times 3590$ Proiects Editor: | MIIE SAGIN |
| :--- |
| $01-6613500 \times 3588$ | Communications Editor: Communications

MATRN ECCLES
$01-6613500 \times 3589$ Nows Editor: Nows Editor:
DAVID SCOBIE
$01-6613500 \times 3587$ Drawing Office Manage Drawing Office Man
ROGER GOODMAN Technical Illustrat
BETTY PALMER
Advertisement Managor AdVertisement Mibs, A.C.I.I. ${ }_{0}^{\text {BOB NIBBS, }}$ CAVID DISLEY
$01-6613500 \times 3593$ BARBARA MILLER
$01-661$
3500×3592 Northern Saloa
HARRY AIKEN 061-872 8861 Midand Sales
BASIL McGOWAN BASLL MCGOW
$021-3564838$
Classified Managor:
BRIAN DURR
$01-6613106$
$01-6613106$
JAYNE PALMER
$01-661$ 3033
BRIAN BANNISTER (Make-up and coopy)
BRIAN BANNISTER
$01-6613500 \times 3561$
Publishing Dirractor:
GORDON HENDERSON

In the last century, life for anyone but the intentionally static, self-sufficient and
unaware was restricted, although it is probable that few were seriously worried by the restrictions: a delay of several days in hearing the news that Wellington had won, or a journey from York to London
that occupied three whole days would that occupied three whole days would
cause little trouble. Nevertheless, any cause little trouble. Nevertheless, any
improvement in mobility, the spread of improvement in mobility, the spread of the severity of life in general was greatly to be desired. The Industrial Revolution had its origin in these conditions.
Since human nature does not change rapidly, if at all, it is unlikely that many of about the fundamental change in life style of the western world did so with any sense of altruism. Then, as now, a man had an idea and was unable to rest until he had a piece of hardware that worked; and if it
did, there was a chance of making some money out of it. There is nothing whatever wrong with that - it is a dream cherished by most engineers - and the inventions changed the world for the better, in most cases. The process was apparently logical:
an engineer saw a need and proceeded to an engineer saw a need and proceeded to
satisfy it. It may have been that the idea was attractive technically and the inventor would have gone ahead without any other stimulus, but needs were numerous and almost any advance in engine
Long before the middle of the present Long before the middle of the presen
century, the maiority of man's pressing century, the majority of man's pressing
material and cultural needs had been attended to, in the 'developed' countries, at least. But the drive to be inventive persisted: provision began to precede requirement and eventually to create it not once, but annually. In the field of
technology concerned with domestic, as technology concerned to industrial engineering, it is opposed to industria e engineering,
now commonplace for companies mesmerized by their own expertise not to perceive a need, but to satisfy a nonexistent one. Devices are designed and public has shown any indication of
wanting them or even knowing what they are, simply because they are technically possible. Not only that, but before the first round of production and the subsequent 'creation' of a market for it is finished, the next version is hurled at us, in slightly modifired form
with the first.
In recent years, this inversion has occurred at least four times. In the early 1970s, perfectly ordinary citizens suddenly discovered an inescapable need to possess pocket calculators. These devices wer made them, but that having been done, the market creation had to begin. Before long we were seeing housewives using calculators to add up their supermark bills: they do not do that now - the
'need', created by advertising, evaporated as quickly as it was formed The same process brought into being the digital watch. It was not easy to make the digital output drive hands, so the infe numerical display was adopted as a
substitute. Advertising created a dem for the watches - no public outcry had forced their development - and we will no doubt find hands in fashion again quite soon. Passing over the sorry business quadraphonic sound, in which the their own good and did not manage to persuade the public to think otherwise, w persuane now reached the video disc, a development which appears to have little to offer over video tape, and which could conceivably prove to be the sticking point
for a baffled and possibly resentful public. In this case, not only does the need not exist; it didn't exist when it was satisfied the first time, with tape machines, in the the first time, with tape mach
To pursue technology for its own sake and to pay for it by exploiting the public's total and uncomprehending belief in technology is, at the very least, open to question. A professional soldier may official wars, but an engineer has no need of that - the world is full of ready-made problems to solve without inventing them

Interfacing microprocessors

Design, operation and application of a "universal" interface board
by J. D. Ferguson, B.Sc., M.Sc., M.Inst.P., J. Stewart, and P. Williams, B.Sc., Ph.D., M.Inst.P.
Microelectronics Educational Development Centre; Paisley College of Technology

	By using a range of practical circuits, this series of articles explains how to interface microprocessors to other electronic and electromechanical systems. The emphasis throughout is on providing economical solutions for educational and industrial applications, rather than achieving the ultimate performance. Part one describes a "universal" interface board which is directly compatible with the 6502, and later articles describe hardware and software modifications for other microprocessors. A range of extra funtions which do not need to be connected to the address or data bus will also be described later in the series.
	Fig. 1. Basic interface system which uses three main i.cs to provide a range of functions. Further circuits which do not need to be connected to the address or data bus can be easily added on daughter boards.

Most people interested in or involved with microprocessors now realise that there is
gap between a microprocessor and its gap between a microprocessor and its ap-
plication. This is an inevitable result of the different aims and skills of the participants. The electronics engineer concentrates on the circuits, the architecture and
the bus structure, but to the user these are almost irrelevant. A mechanical engineer may know the functions that the microprocessor should perform, but cannot connect the device to the hardware it must control. A strain-gauge speaks in millivolts, but a out binary data. For each problem there are solutions, although they are sometimes difficult and costly or involve additional work by the user
When designing an interface the most important and difficult decisions to make are which microprocessors/microcomputers should the interface be directly compatible with, how many others could be adapted, and the bus structure and board format to meet these require-
ments. The board and bus structure closely linked and may constrain the
choice of microprocessor. For example, the S100 bus supports the 8080/Z80 family but boards have been designed for the
6800 family. However, the large board size and mixed power supplies make the S100 an unsuitable format. The high cost of Multibus and other industrial standards makes them inappropriate for educational
use. use. Eurocard which is widely available and can be mounted in standard racks. The Acorn bus structure, which was chosen, enables the interface to be directly used with a low cost unit, a rack-mounted system, or the
new BBC computer. However, with suitable interconnecting cables, the interface is equally compatible with the Aim 65, Apple and Pet.
The choice of functions is a compromise between the desirable and the ecomiso mically feasible. The final design includes digital-to-analogue conversion, analogue-to-digital conversion with 16 input channels, 16 line i / o ports, 8 output drivers, 2
counter-timers, serial $i /$ and handshation counter-timers, serial $i / 0$ and handshaking
lines. As many microcomputers and microprocessor boards already offer a few functions, the corresponding i.cs can be omitted on the interface without affecting the remaining functions.
The parallel i/o ports, handshaking,
counter-timer and serial $i /$ are all achien with a 6522 v.i.a. (versatile interface adapter) whose programming can be as complex as the c.p.u. if all possible functions are considered. However, by starting
with the parallel ports and gradually in with the parallel ports and gradually in
cluding the other options, programmin can be kept manageable. The d-to-a converter is based on a ZN425 which, with extra gating, can be used as an a-to-d converter. To increase the d-to-a flexibility, the parallel ports can gate the d-to-
output to a series of sample-and-hold circuits. Although this technique slows down the response, it is satisfactory where, for example, multiple analogue outputs are
required to drive electromechanical required to drive electromechanical loads.
An important part of the interface is the ADC8017 16-channel successive approximation a-to-d converter. This device contains internal switching and gating which allows it to be connected directly to the address and data lines of most 8 -bit
microprocessors. Although the 8017 is no particularly fast, the ability to scan 16 analogue channels and load the data into memory with simple hardware and soft-

Fig. 3. Address decode circuit. Two binary-encoded switches allow independent selection of block and page.
ogging systems. To complete the inerface, output drivers are provided for such as transistors and thyristors. C.m.o.s. logic is used for the output drivers to prevent loading port B which can then be used with external signals. If the l.e.ds on the board are used, and the interface is system, no additional connections are required to run and test i / o programs. Also, by linking the d-to-a output and a-to-d input lines, both functions can be tested at the same time. Although these points may imple demonstrations have proved to be valuable for beginners. Extensions to this board could include opto-coupled switches, power control devices, signal nd microprocessor communication. These options, which will be covered later in the series, are not necessarily connected to the address or data bus and can therefore be added on a daughter board or case a circuit will be described, which can plug into one or more of the popular microprocessors, together with details of how it can be modified to suit other The a
ponents in the basic interface is shown in Fig. 1. Each device is connected to the control and data bus, and is memory v.i.a. and a-to-d converter each require sixteen memory locations for their internal
registers and input channels respectively, and each location is selected using the four
least-significant address lines A0 to $A 3$ The single channel d-to-a converter requires only one location.
Sets of switches and 1.e.ds are linked to the v.i.a. so that external loads can be driven and sensors monitored to allow i/o
simulation while developing programs The 6522 has several other capabilities which will be covered in a later article.

Memory maps and address

 allocationEach component in a computer system must have one or more memory addresses assigned to it, and the designer allocates memory space according to the compomemory space of 64 K bytes it might seem simple, but as a system expands more and more memory space is pre-empted. To ensure that this interface or other new board can be used with different systems,
the memory maps must be compared to identify their unused areas. Fig. 2 shows the memory maps of several standard 6502 systems and a typical 8085 arrangement for comparison. All 6502 systems have r.o.m. at high order memory, although only the
top few bytes which include locations used for the automatic start-up procedure are essential. It is convenient to use adjacent areas for r.o.m., though some gaps may be left for other functions as in the Apple and (the first 256 bytes) and memory access to
this area requires fewer bytes and less time using the zero-page addressing mode of the
6502 . It is sensible to use this facility for 6502 . It is sensible to use this facility for
rapid access to data which is required repeatedly by various programs. Page one peatedly by various programs. Page one
(location $256_{10}-511_{10}$) also contains r.a.m. because the 6502 uses this page as the stack for subroutine jumps and interrupts.
The Aim 65 and Acorn system 3 . The Aim 65 and Acorn system $3 / 4$ folto adapt the computer for a particular application. This flexibility has made them popular in colleges and universities. Alhough the Apple and Pet are also popular in engineering and scientific applications, filled to the brim with memory.
The address decode circuit shown in Fig. 3 is the result of several design changes to give the interface board the
flexibility needed for operation with several systems. Two binary encoded switches allow independent selection of block and page, i.e. the first two digits of the four digit hex address, via exclusive-OR gates which monitor the top eight bits of the
address bus. The 74LS139 decoders provide chip select to the d-to-a, a-to-d and v.i.a., allocating sixteen sequential memory locations to each, and modify the to the chosen base address. 40,80 or C 0 to the chosen base address. Therefore, the
circuits can be added to any compatible microprocessor system that has an unallocated memory space of at least 64 consecutive bytes. Where memory space is not critical, par
be omitted.

Fig. 5. Board layouts and component location diagram. Assembled boards and kits will be available from Control
Universal, 11 Bush House, Bush Fair, Harlow, Essex. CM186NS.

The complete interface is shown in Fig. 4. The decoding circuit on the right is
wired to the address bus on the Eurocard connector. Additional gating is provided for the d-to-a and a-to-d converters and both devices have protective resistors and simple capacitive filtering to reduce noise. The a-to-d converter also has the option of a shunt resistor on each channel for use device can be provided from the reference of the ZN425 or from the separate LM317 regulator. This can be trimmed to give, for 10 mV steps in the a-to-d conversion. Part 2 describes the functional block detail together with simple program examples.

Corrections - Satellite tracking by home
 computer

One or two errors in the second part of this be pointed out: At the top of the third column on page 67, DC should read DE. In line 16 of the BURP program, $\mathrm{N}=\mathrm{CS}$ beginning of line 36 should read IF W/>0 $A=180 A+!$. We apologise for $\begin{aligned} & \text { besing }\end{aligned}$ errors.

Atom Business, by John Phipps.
110pp., paperback.
Phipss Associates, $£ 6.95$
re not necessarily the prime st of programs fook, since it contains icrocomputer in business. Peripherals needed a domestic television receiver and a casset corder: a printer is useful, but not essential for most of these programs.
Complexity varies from a simple listing to ermining the effects of various parameters on he length of a queue - probably this could be varied for use in other circumstances, such as reasons for each program are set out and operating instructions presented in simple terms prior oeach listing
The book is completely practical in that there is nothing on programming as an art - simply
he programs, including one which will help to make a decision on whether to lease or buy one for working out expenses. A cassette containing the programs is obtainable from Phipps Associates, 50.50 Avenue, Video
246 pp., paperbac
rentice-Hall International, $£ 5.55$.
Messrs Sipl and Datl
Sise premise that much of the domestic video, viewdata, audio and computing machinery cur-
rently considered as separare entities should, rently considered as separate entities should,
and inevitably will, be brought together to form what they call an integrated video computer.

constantly told, bring about a social revolution in working habits, communication, banking, shopping . . e etc, but, although much of the
technology already exists, there are problems still to solve.
Adopting an extremely methodical approach, the authors consider all the ingredients of such
an integrated system, one by one, and try to form an opinion on the way they will develop if the i.v.c. is to come along. They view the concept from several angles - video, comput-
ing, data conversion and communications, explaining what is now in existence and what will have to be done in each sector to reach the goal of an integrated system. The conclusion is even-
ually drawn that the i.v.c. will be with us towards the end of the decade, given that legalities and vested interests can be surmounted, and that we will then have a,
total communications",
ts in Sound Broadcasting Ed: John Lovell.
77 pp,., paperba
IBA, London.
Local radio is the subject of the fourtenth in the IBA Technical Review series, and contains
nine articles by IBA staff and consultants. Studio design, installation and testing are
nine
Stioned by and covered in the first three sections, followed by a
description of the contribution network, which
nables local radio companies to send news iems to IRN in London for national use. Technical features of the first i.1.r. transmitters are the Phase 2 stations including a look at pulsewidth modulated (Class D) power amplifiers. A section on the Borehamwood m.f. aerial for the London area describes the design of an extremely complex system, which must not only
cover its service area and avoid other areas sercover iss service transmitters, but must do this at wo frequencies simultaneously.
Surround sound is discussed, in theory and
practice, and in the final section the head of practice, and in the final section the head of
Long-range Studies looks at the future of radio Lroadcasting. Technical Review 14 is available
from IBA Brompton Road London SW 3 IE from IBA, Brompton Read
No charge for single copies.

The ZX81 Pocket Book, by Trevor Toms. 136pp., paperback. Owners of the Sinclair ZX81 microcomputer supplied may feel the need of additional ruition in the techniques of programming. If so, this book should be of assistance
To illustrate the sections of instruction (on
efficient programming, using machine code efficient programming, using machine code,
using data files, etc.) a number of programs,
mainly games, are presented and explained. The mainly games, are presented and explained. The
book is not simply a rewritten version of the ZX80 Pocket Book, but is said to be almost completely new, since the ZX81 is quite dif ferent to the ZX80. Much of the contentess the
used by ZX 81 owners who do not possess the used by 2×81 owners who 16 K r.a.m. A cassette, containing the program described in the book, is also available. Phipps Associates are at
Epsom, Surrey KT18 5 HQ .

NTEWUS OF TTHTE RTONTTVT
 Naval radar

Amateurs view the earth

By the time you read this, Britain's first amateur satellite should be in orbit 330 miles up with an Organized by the University of Surrey depart ment of electronic engineering, the launch was to accompany a NASA solar Mesosphere Exlorer spacecraft, set for September 12 at the
time of going to press, and is especially interesting in Vosat's ability to provide earth pictures for display on a domestic tv receiver. The satel-
lite will not be fully operational immediately lite will not be fully operational immediately,
though the v.h.f. and v.h.f. beacons should be in use for telemetry; picture transmission should start in a few weeks time.
the pictures are taken by a the pictures are taken by a charge-coupled
imaging array made by GEC's Hirst Researct imaging array made by GEC's Hirst Research
Centre and provides land and sea image data for digital transmission over the v.h.f. beacon using
a.f.f. k . at 1200 bit/s, line synchronous. Image
reliable satellite-to-ground link for reception by simple amateur stations: an unmodified narrowband f.m. receiver together with a fixed pair of
crossed dipoles should do for most passes Besides normal telemetry data, computer outputs, synthesized speech for school demonstrations, and earth imaging data are also information
sources for the beacons. The computer is based around the RCA CDP1802 microprocessor, enables telemetry surveillance, command and status management,
experiment data storage and processing, disseexperiment data storage and processing, disse-
mination of orbital data and operating minedules, and closed-loop attitude control. It has direct high-speed data links with the magnetometer and radiation experiments, and access
to the earth-imaging memory area for image to the eartu-imaging memory area for image r.a.m. loaded from the ground via the telecom-
mand link and which can be modife mand link and which can be modified, or re-
placed during flight, from ground. Commands placed during filight, from ground. Commands
from ground stations take precedence in cases
where commands emanate simultaneously from where commands emanate simultaneo
both the microcomputer and ground.

Cascade noise

reduction

 Integrated circuits for the new Dolby noise re-duction system are being sent to licensees this month. Made by Hitachi, but designed by Pioneer, the i.cs are off the mark much sooner than i.cs would not be available until some time next year, but it is undoubtedly market pressure that has accelerated development. Dolby say that "genuine market desire" for more noise reduc ion prompted the new system, which reduce noise by up to 20 dB . But as competing n.r.
yystems abound now and threaten Dolby's rowth in this area, Dolby clearly needed to ome up with something new, having found tha e B circuit couldn't be pushed far enough
without adverse effects, both errors in fre quency response and overshoot.
So they adopted the
So they adopted the approach of cascadin
wo sliding-band circuits, each working at dif erent levels (rather than different frequencies) But although a good amount of noise reduction
is obtained in this way, as many enthusiasts have discovered, it is not altogether satisfactory
by itself - what is described as a mid-frequency by itself - what is described as a mid-frequencey
"mud" still remains. Dolby found that to re"mud" still remains. Dolby found that to re-
balance the amounts of high, mid and low-fre quency reduction one thirnover frequency
1.5 kHz in the - -system was best set 1.5 kHz in the B-system, was best set two oc-
taves lower at 375 Hz for the cascade-circuit. A taves lower at 375 Hz for the cascade-circuit.
slightly higher compression ratio of 2.2 instead of 1.9 is used and further circuitry is needed to eep side effects down: h.f. de-emphasis at the ncoder input to reduce mistracking, and a net-
vork in the low-level stage to prevent tepe work in the low-level stage to prevent tape satu-
ration at high signal levels. With this additional circuitry the C system, as it is called, is claimed
to be "at "at least as free of side effects as the B to be "at least as free of side effects as the
system". Altogether Dolby say the circuitry
竍

In an effort to help warships survive when atgent' array of nastiness, Plessey has developed a and rada Many constraints are imposed on such a
dar. High-flying aircraft must be detected at the same time as sea-skimming missiles; small, fast ttack craft, which carry sufficient weaponry to at precisely the same time as a vertically diving missile aims for the funnel.
AWS-5 comes in several forms, for different AWS-S comes in several forms, for differe vaiety offers a dual-beam aerial on a stabilized platform. The differing sizes and direction of erial design and the use of pulse compression. wo aerials are used - a main parabolic reflec or for low-angle detection and a smaller typ height-finding facility is incorporated, both eams being narrow horizontally, but some iscrimination between high and low objects is search patterns. The two are multiplexed and an be viewed separately. Coded-pulse compres sion confers long range, high resolution and ow peak power requirement: the technique is
one variety of the 'chirp' process, in which the radiation is frequency-modulated during the pulse; here, phase changes at each transition of
pseudo-random code. Peak power can be kep pseuxo-random code. Peak power can be kept
ow, which means that the radar is less easy for in attacker to detect, and resolution can be

High-speed car

 radioichard Noble will make his attempt on the which is powered by a Rolls-Royce Avon jet ngine and which, Noble hopes, will move a around $700 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. For the attempt, a numbe
of communication channels are neede to link support crews at the ends of the run, a high speed fire tender, timekeepers, an observation
iircraft and the driver himself. Racal-Messenger have planned a multiway u.h.f. link which will allow several conversations to be carried on su multaneously, being overriden by transmissions
from the car, which will be received automatrom the car, which will be erecived automade'
cally by all units. The aerial is of the 'blade ype normally used on high-speed aircraft.
Yet another application of electronics at high speed is in the Grand Prix racing car
which uses the 'ground effect'. The effect is achieved by designing cavities in the When air passes under the venturis, the car is physically sucked down onto the track, offering greater stability and consequently igher speeds. unfortunately the gap
between the venturi and the surface of th oad is critical to the level of suction obtained, and it is necessary to establish which type of suspension system will give he best performance to take advantage of constantly changing pitch through rapid acceleration and hard braking. The
Talbot-Ligier Grand Prix xeam use a Sangamo UDC 100 longstroke
displacement transducer, linked to onoard monitoring equipment, to record the
hanges in suspension geometry as the car is driven at racing speeds.
oding is difficult to analyse and confuse To avoid jamming, the transmitter uses a traveling-wave tube, which can be made fre-
quency-agile, while sea clutter is reduced by the use of a developed version of Plessey's adaptive use of a developed version of Plessey's adaptive
moving target indication technique. The search area is considered as a a treat number of cells', which are defined by the transmitted pulse
length in the radial (distance from transmitter) ength in the radial (distance from transmitter)
dimension and bearing gates in the tangential direction, the average signal level in each cell
being digitized and stored. Variations in this being digitized and stored. Variations in this
level on succeeding scans are assumed to mean level on succeeding scans are assumed to mean
hat an object has entered or left the cell and the eturn is displayed: if nothing has changed, it is Slanked. The process is complicated by the mo-
ion of the ship, but the principle remains. Two Coreign navies have ordered the radar, and the
 Although of not such a high speed as the world land-speed record, racing
motorccylists have similar communications spoblems which have been solved by Pye
Tele Telecom whose mobile radios and 'pocketrones' were used at the formula and
Classic T.T. Races on the sle of Man. The Driver of the winning Suzuki machine, shown her, was Graeme Crosby and he and his team used the radios for a two-way flow of ace information and tactical decisions. A further Pye Telecom radio system was used by the race marshalls, who had mobile radio telephones mounted on their
motorcycles. This enables them to react quickly in the event of accidents, summoning motorcycles. This enabies aniem
help and warning the organisers.

Cardphones

Major London railway and tube stations are to
have Cardphones installed in a trial for what have Cardphones installed in a trial for what
British Telecom call "a step towards the cash-
less society." But before you get less society." But before you get to exe cited
cashless does not mean broke - Cardphones cashosss does not mean broke - Cardphones eat
Phonecards and that means purchasing either forty or two-hundred 5 p units in advance. A Phonecard is a piece of plastic similar to a
credit card with 'holographically memorized call units printed on it. As a unit is used up, so that unit is erased, but a warning is given twenty
seconds before the last wnit wniss seconds before the last unit runs out to give you
ime to fumble for a new card, say goodbye or ume to fumble eror a new card, say goodoye or coins). Throughout a call, though, a readout
tells the caller how many units are left without ells the caller how many units are left without sot - completely free of charge!
Long, consecutive and overseas calls to tot hampered by the insertion (and aysilem are of coins, but if you make one call directly afte another you still lose any remaining parts of

Small wavelength

Allilm	$\begin{aligned} & \text { Brisish } 7 \text { EL.ECOM } \\ & \hline 1011201 \end{aligned}$
Fry	40 units
	For condition of tee

unit, as is the case with present domestic and public telephone Each card has one or two tracks, depending
n its price, on which the call units and other information are printed. The extra information ystem whether or not the card is accep in the .e., whether British Telecom intended the card
for making pubic calls anether the card is ndeed issued by them and not by any other Austriatees already similar systems. Belgium and
huch systems and the French are making trials The call units are read by a configuration of
infrared detectors that pick up reflected light infrared detectors that pick up reflected light
from the coded patterns on the card. As a unit is sed up it is erased thermally A second microprocessor looks after the nor-
mal routine of the dialling system and allows nal routine of the dialling system and allows
normally free calls such as $9999^{\text {a }}$ and directory enquiries to be madede without the use of a card. The system was developed in Switzerland by
Sodeco, a subsidiary of the Landis and Gyr Group who are now supplying the apparatus to British Telecom.
Initially around
Initially around 120 Cardphones are being
installed in London and another 80 or so will appear in Birmingham, Glasgow and Manches-
ter. Phonecards will be ter. Phonecards will, be available from post sffices and some retail outlets inclu
staion bookstalls and fare counters.
drawn. According to the article, the power abs sorbed by a human adult standing 20 cm awa from an antenna with a 30 W input at 90 MHz o
140 W at 27 MHz is the same as would be ab 140 W at 27 MHz is the same as would be ab irradiation. An average human adult standin
ind 20 cm away from a quarter-wave antenna operat ing at 20 MHz will absorb about 8.5% of the ntenna input power, but at 90 MHz , over 50% age height of an adult is about a resonant length at this frequency. Electromagnetic coupling is ncreased considerably when the body is
ontact with the ground, as opposed to bein contact with the ground, as opposed to bein
solated, and the body may act as a directo lement when placed close to the antenna. \dagger IEC report number 657 Non-ionizing radiation
hazards in the frequency range from 10 MHz to
300 . * IEEE transactions on Microwave Theory and Tech-
niques, Volume MTT-28, Number 11 (part 1),

Satellite on a string

Sounding rockets remain in the air for only a
few minutes; low-altitude, non-propulsive satel lites can gather data for a few hours before theit orbits decay. A possible solution could be a low cost satellite tethered by a long (very long - up
to 60 miles) super-strong cord to the NASA space shuttre.
Engineers from the Marshall Centre have
been carrying been carrying out feasibility studies with space
scientists from Italy for what could be the firs scientists from Italy for what could be the first
USItalian cooperative space project. The Italians could build the satellite and the American
would supply the equipment necessary to would supply the equipment necessary to
handle it. The satellite, attached to the shutte by the tether line, would be trolled through the
Earth's upper atmoshere in Earth's upper atmosphere in a very low orbit
perhaps only 80 miles above the Earth, for an perhaps only 80 miles above the Earth, for an
extended period. It would be used to gather data
on the atmosphere on the atmosphere, the magnetosphere and
gravity. The system is likely to become opera-
tional by the mid 1980s.
ver the years there has been much mild
ntroversy in most western countries over the maximum safe level of microwave radiation Recent news that an American body fo workers' compensation defined the cause or to microwave radiation will hopefully invoke rays. As in most Western countries, the maximum microwave radiation is coftined as $10 \mathrm{~mW} / \mathrm{cm}^{2}$
mat figure 1,000 times higher than that adopted by the Russians at $0.01 \mathrm{~mW} / \mathrm{cm}^{2}$. Taking into account that the conditions associated with thes
figures are not exactly the same, the difference is still enormous.
Our maximum level is based on that determined by the Americans nearly 20 years ago
According to an International Electrotechnical Commission reportt from 1979, the very large discrepancies between standards are due to dif-
ferences in approach ferences in approach, namely that the USSR
standards are based on the possibility of any noticeable biological effect, in contrast to thermal injury, and most western countries take the
view view that minor reversible effects are no
necessarily hazardous to man. Also, say the IEC, the Russians have used very much larger sarey factors than most other countries in defin-
ing their limit. As there is, even now, much

doubt as to the long-tern

 radiation,precaution
There
There are stumbling blo ffects of microwaves on humans, could account for the uncertainty as to the 'safe the lack of a suitable puinea-em appears to be size, density and material of every part of the body can be critical. Also, measurements mad the near field', i.e., the complex field close ic components additional to those of the main propagation field, are difficult to interpret Acms of potential hazards.
According to the National Radiological Pro-
tection Board, frequency been proposed in the USA to bring down the maximum exposure figure to $1 \mathrm{~mW} / \mathrm{cm}^{2}$ at fre quencies where the radiation has the greates
effect on the human body. But only time will tell whether these new limits, if accepted, are safe, or indeed whether the old limits were on the safe side anyway.
tween a 'thin-wire' antenna and a biological body was reported in the IEEE's publication
dealing with microwaves* last November dealing with microwaves* last November. T
research was carried out to assess the potentia hazard of portable transmitters, especially those
for c.b., and some interesting conclusions wer

Teletext goes commercial

You can now buy a page of text on Oracle, the
six-year old ITCA teletext service, for a weekly to the 180,000 teletext-equipped set throughout the UK, though the service will be available on a regional basis. First Scottish Television start their own input unit this
autumn followed by Channel TV some time later, culminating in a fully regional service by $1984 / 5$ that can offer local news as well as adver-
tising - by which time the tising - by which time the number of teletext
sets is predicted to be $3,000,000$. Oracle Television Ltd, formed last year by the ITV comsion Ltd, formed last year by the ITV com-
panies, will promote itself mainly through
"filler tv advertisements to the tune of $£ 2$ mil lion-worth of
month period.
At about the At about the same time - probably during
the Department of Industry's teletext promoUhe Department of Industry's teletext promo
tion in October - the number of Oracle lines
will be increased will be increased from two to four. This allows the access time to be reduced typically from 4
to 20 seconds, which otherwise would become unacceptandy, long as the volume of text pages is
increased. One feature of this new ervice is increased. One feature of this new service is that
certain advertising not permited on television certain advertising not permitted on televisio
will be allowed on Oracle - from football pool
promoters and booknale promoters and bookmakers in particular.

Integrated circuit design

Understanding the nature of black boxes may make a significant contribution to circuit performance
by J. L. Linsley Hood

The starting point for this series of done most to encourage the application of op-amps as a simple cost-effective solution to circuit problems.

Historically, the 741 device was introduced by Fairchild at the end of the 1960 s, along with several other second-generaion ternally-compensated improvement upon Bob Widlar's classic 709. In the Fairchild $\mu \mathrm{A} 741$, most of the minor operationa problems of the 709 were reduced to an extent that they were no longer inconnearly ideal building block for low fre-
quency applications.
Understandably circuit facilities such as output short-circuit protection were similar to, and
inspired by the same requirements as those being introduced in the discrete component audio amplifier designs current at the time. However, the standardization on the use of separate + and - supply
lines, together with nearly identical inverting and non-inverting inputs and the use of circuitry which allowed a high degree of supply line isolation, presaged de velopments which the discrete componen amplifier designs were not to adopt at al widely for many years
I have shown the circuit, in very simplified
form, in Fig.1, with the necessary apology form, in Fig.. , with the necessary apology
that a simplification of this type inevitably takes liberties with the actual design, simply because a more accurate representatio

Why look inside?

There are three ways in which a better
understanding of the internal design of inear and quasi-linear integrated circuits can help the engineer: more satisfactory
erformance of circuits following from greater appreciation of their strengths and limitations; possible use of accessible in-
ernal circuitry in unusual applications (a rich hunting ground in some of the mor dvanced units); and as an encyclopaedia of ingenious circuit design techniques, arked out by some of the mosics. Choice of the 741 as the starting point
for this series stems mainly from a feeling for this series stems mainly from a feelin that it was this i.c. more than any othe
which was responsible for the reconciliation of linear circuit engineers to the idea
that most of the circuit functions they had
at all. For example, although I have shown the input transistors as a a p-n-p long-tailed pair, because this is effectively how they operate, they are in reality a rather more
complex arrangement to allow the use of a complex arrangement to allow the use of
pair of n-p-n devices in the input stage pair of n-p-n devices in the input stage -
in a modified cascode connection - of a form which is identical to, and perhaps inspired by, a

$$
\text { years earlié }{ }^{\star} \text {. }
$$

The reason for this rearrangement, shown in Fig. 2 , is that it is very difficult in
conventional bipolar technology to fabricate p-n-p transistors which have any respectable current gain h_{FE}, except in the case where the collector is electrically connected to the p-type substrate such as in
the output device. Other $p-n-p$ devices must be of the lateral type, as shown in Fig.3. These are robust, but generally have h_{FE} figures only in the range 5 to 25 depending on the skill of the manufacture masking. manufacture of current mirrors of on kind or another. These are circuit arrange ments in which the output limb looks and behaves like a conventional high-im-
pedance constant-current source, but with an output current controlled by an input current fed into its other limb from some external source. The output current the mimics or mirrots the input current. haved tyowes in Fig. 4 †. The popularity of this type of circuit element in i.c. manufac
${ }^{\text {LLinsley Hood, J. L., Electronic Enginering, }}$ March 1967. (Letters)
implemented using discrete components
could be done by integrated circuits, with
improvements in simplicity and cost could be done by integrated circuiss, with
improvements in simplicity and cost effectiveness.
In spite of all is limitations, in gain and rent demand, there are many applications in which the 741 gives excellent service. This applies in audio and medium freciated circuitry is designed with an eye to its strengths and limitations. In addition here are a vast number of other circuit gain of this i.c., coupled with its good reiection of supply line voltage fluctuations and its ability to operate with input d.c.
levels almost anywhere between the limits imposed by iss supply voltage lines, make the life of the linear circuit engineer much
simpler than it was some 15 years ago.
ture arises from the fact that resistors and capacitors are inconvenient to construct in any large values, whereas transistors and diodes are cas. Molad an if a curemen mirror is used as
in gain can be won
This allows, for example, better operation of an input long-tailed pair wherein the loss of gain due to the normal halving of the g_{m} of the input devices is recovere gain between the two inputs of the long tailed pair.
The operation of this type of circuit taking for example the simplest arrange ment of Fig. 4a, hinges on the fact that if
transistor is forward biased so that it passe transistor is forward biased so that it passes
a certain collector current, the voltag across its base-emitter junction will then be precisely that which is required to caus $\underset{\text { Electronic Circuits. Academic Press. }}{\dagger \text { Davise }}$

Fig. 1. Simplified input circuit operates as -n-p long-tailed pair but in reality input devices are n.p.n.

Fig.2. Because of difficulty in fabricating
high-gain $p-n-p$ transistors input igh-gain $p-n-p$ transistors input rrangement uses $n-p-n$ types in modified
cascode circuit. cascode circuiz

an identical transistor (such as one diffused at the same time on the same chip and having the same junction area) to pass the same current. This is not strictly true in
practice because the input current will be practice because the input current will be
greater by two lots of base current. greater by two lots of base current.
However, if this was important, the mask used in the diffusion process could cause Tr_{2} to be slightly larger than Tr_{1}. The circuits of Fig. 4 b and 4 c minimize this error. My own shorthand symbol for the
current mirror configuration is shown beneath, and I have used this in subsequent drawings.
In the full circuit of the input stage,
shown in slightly simplified form in shown in slightly simplified form in Fig.5, a three-transistor current mirror or the
type shown in Fig. 4 b is used as the load for the input long-tailed pair, and an ingenious combination of two simpler (4a type) current mirrors, transistors 8 and 9 and 10 and 11 , is used to stabilize the operating
currents of the input devices. The way this works is by means of a d.c. negative feedback loop. If the total current of Tr_{1} and Tr_{2}, which should not contain any signal components, tends to increase, then the current output of the mirror $\mathrm{Tr}_{8}, \mathrm{Tr}_{9}$ will
also try to increase. However, this is also try to increase. However, this is
effectively fed from a constant-current source (the output of the current mirror formed by Tr_{10} and Tr_{11}) so the only thing which can happen is for the base voltage on
the $\mathrm{p}-\mathrm{n}$-p transistors Tr_{3} and Tr_{4} to bethe p-n-p transistors Tr_{3} and Tr_{4} to be-
come more positive, which reduces the come more positive, which reduces the -
throughput current of the input stage because it effectively reduces the forward bias on the input transistors at the same $\underset{\text { time. }}{\text { The }}$
The interaction of these current mirrors
also operates to minimize the magnitude of any unbalance currents in the input stage, which improves its symmetry, while simultaneously acting to lessen the extent of any breakthrough of signal components from the supply lines.
The second class-A amplifier stage and
output stage, as shown in Fig.1, is of conoutput stage, as shown in Fig. , is of con-
ventional form - the traditional high-gain small-signal amplifier followed by unitygain power output stage, as spelled out so many years ago in this journal by Tobey
and Dinsdale. High-frequency loop stabilization is achieved by the simple and effective expedient so common in early "hi-fi" amplifier circuits of a capacitor between collector and base, as shown. This are discussed later.

Fig.3. Lateral type of p-n-p transistor,
though robust, has low value of $h_{F E}$, though robust, has low
generally from 5 to 25.

(b)

(c)
(a)

no protection against damage due to output short circuits. This is accomplished by preferred typa) of n-p-n transistors (bis plete diagram of Fig. 6 , one of which is Tr_{14}, and will take the current from the hput to this if the voltage drop across this voltage, exd the same way in respect of pair class A amplifier stage $\operatorname{Tr}_{16}, \operatorname{Tr}_{17}$. The output stage forward bias is provided conto give a quiescent current in class $A B$ operation of about 1.5 mA
The final circuit of the complete i.c. is
shown in Fig.7. I have actually shown that used by National Semiconductor, but all of he commercial 741s use a closely similar structure. In this, the only item not covinadvertent d.c. error at the output. This is done by putting a pair of resistors in the mitter leads of the current mirror used as fhese is the input stage. If one or other ther limb the current in that limb alance will need to be greater; which calls or a change in input potential for that input device to maintain status quo. As this djustment will harmally, the result of the oltage shift equivent ultiplied by the required input offset. his provides a convenient means for obaining a small shift in the output d.c. formance of the i. interference in the per

Performance

The d.c. and low-frequency voltage gain given by this circuit is very high - in
excess of 50,000 , with typical values of the order of 200,000 . However, the presence of the h.f. stabilizing capacitor has a frequencies higher than a few hertz, with the gain decreasing with frequency beyond some 5 to 10 Hz at a rate of $6 \mathrm{~dB} /$ cotave.
A typical gain and phase-shift graph A typical gain and phase-shift graph is
shown in Fig. 8 .

WIRELESS WORLD OCTOBER 1981 phase-lag inducing components within the is the reason why the unity-gain point for adequate unity-gain stability in a feedback configuration cannot be made much higher
than 1 MHz . And following upon this, the than 1 MHz . And following upon this, the of the audio band, say 20 kHz , is only of the order of 50 .
Unless, therefore, the gain requirements of an audio amplifier stage using a 741 are kept deliberately low, neither the ampli-
tude response and phase linearity, nor the harmonic distortion characteristics of the amplifier stage, are likely to be satisfactory in the context of contemporary expecta-
tions for "hi-fi" equipment. Fortunately tions for "hi-fi" equipment. Fortunately
there are now third-generation operational amplifiers, such as the Texas Instruments TL071 series, which offer substantial improvements over the performance of the 741 -type i.c. in those regions which are of importance to the audio engineer, and 1 series.
The other features inherent in the design of the 741 which must be borne in mind in its use if results are to be satis-
factory are those which concern the input factory are those which concern the input
long-tailed pair of bipolar transistors and the effect of the h.f. compensation capacitor on the transient performance. Taking the first of these, the design of the inpu stage leads to a combined collector curren for the long-tailed pair of around 25
microamperes. Assuming a current gain of 100 for the input devices, the necessary forward bias current for $25^{\circ} \mathrm{C}$ operation of the circuit will be $0.1 \mu \mathrm{~A}$ for each input, and this current must be supplied through
any resistive circuit components in the in any resistive circuit components in the in
put paths. While an output d.c. offset can be minimized by making sure that the tota resistance value in each input circuit through which these bias currents mus flow is the same (those component unimportant in this calculation), it must be remembered that these currents increas significantly with temperature, and tha the internal matching of the input device may not hold over this range. For this
reason, the total d.c. gain of the circuit and the amount of output d.c. offset which is tolerable must be considered when its cir cuit environment is being formulated, along with the temperat ove which it is to operate.
The to the nature of the internal h.f. com pensation, is a rigid upper limit on the voltage slew rate which can be achieved at the output, around $0.5 \mathrm{~V} / \mathrm{s}$. If a composit signal is applied to the input which conof change in putput voltage than this, the total composite signal will be lost while the output moves from one instantaneous d.c. level to another, at the maximum rate pos-
sible. This self-evident fact applies to all sible. This self-evident fact applies to all cluding some in the "hi-fi" field. It is, I think, a sad commentary on the state of our art that a fact which is so simple to comprehend and can be stated so simply,

Fig.7. Complete circuit shows arrangement for offsetting d.c. error in the output. Reducing value of appropriate emmitter resistor in the input stage produces an output voltage shift equivalent to gain \times input offset.
of technical papers aimed at proving the of techn
superior
product
To live within this limitation, it is necessary to ensure in all cases where slew-rate and not all applications would be influenced by this - that the maximum rate of change of voltage in any input signal does not approach the output slew-rate divided by the effective a.c. gain.
There are now a large number of more recently designed and more expensive third generation operational amplifiers, in which both the small-signal bandwidth and slewing rate are much greater (by a factor of ten or more) than is the case for
the 741. In some of these, such as the Ti the 741 . In some of these, such as the T1
TL071 and the RCA CA3140 types, the input bias requirements have been reduced to a level which is so low that the choice of input resistance values can be determined

Fig.8. Frequency response shows phase error beyond 3000 Hz which limits unity-
gain point to around 1 MHz . Low open-loop gain point to around 1 MHz . Low open-loop gain at 20 kHz limits usefulness in hi-fil

Extra-terrestrial relays

In October 1945 an article by a nev

 auhtor, a man named Arim Cirst in Wiance; the subject of the article seemed to belone a technical journal like Wiveless Wordil is deed, Mr Clarke subsequenty became oneof the best-known authors of science fie of the best known authors of sctence
cion. The second and succeeding reading tion. The second and succeeding reeding,
howerer, showed that what Mr Clarke hai to say was sound sense. Here was nothin tiensty a scheme to use artificial geosto tionary earch satellites as bro
communications plafforms
As everyone knows, space is now thic with satelites of all descriptions - there
are 10 in geosychronous orbit - but in are 110 in geosynchronous orbit - but
1945 it needed a great deal of thought to b sure that, by publishing such an artici
WW would not be made to look foolish. There is currently a crescendo of activit
and speculation on the use of satellites fo television and data communication, any readers mighe like to see how it all stare This month, therfore, we have included
reprint of the original article as an insert in reprint of the original articte as an inserti
those issues distributed in the UK. It wo not possible to do this for overseas reader but if anyone abroad would like a copy they need onty send a stamped, zddresse House, The Quadtant, Sutron, Sur SM2 SAS, whereupon it will be sent o immediately

FREE WITH THIS ISSUE

An examination of this shows two important features. There is a significant
additional phase error beyond 300 kHz additional phase error beyond 300 kHz ,

Fig.5. As well as a current mirror for the
tail, type (b) in Fig.4, two (a)-types stabiliza tail, type (b) in Fig. 4, two (a)-types stabiine
operating currents of the input transistors
by d.c. negative feed by d.c. negative feedback onto the base of
$T r 3$, $T r 4$.

Fig.6. To provide shor-circuit protection,
Tr15 passes current from the input if the emitter resistor drop exceeds base turn-on Voltage. Ir22 acts in a similar way for the
Darlington pair.

WORTLD OF AMATMEUTR RADTO

D-C goes professional

The recent IERE Clerk Maxwell Commemorative Conference at Leeds Univer-
sity on "Radio Receivers and Associated sity on "Radio Receivers and Associated
Systems" emphasised the considerable degree of current professional interest in direct-conversion (homodyne/synchrodyne) techniques, including the use of phasing networks to provide flexible demodulation For example MEL have developed a 20 watt "Callpack" manpack h.f. transceiver in which the Weaver "third method" system, combined with digital quadrature phase shiftung, is used both for s.s.b. genI.A.W. Vance, G3WMS and a team at STL have further developed their inte-grated-circuit n.b.f.m. d-c receiver to minimize the effects of oscillator phasenoise by means of what they term an "amtor" and expect to see widespread use of this class of (mobile) receiver in the near future since it permits almost the complete receiver to be put on a chip. Philips Reing the use of surface acoustic wave (s.a.w.) resonators to provide fixed-tuned d-c v.h.f. paging receivers suitable for the British Telecom National Paging System, the s.a.w. resonators being used to provide tor frequency control at a fraction of the cost of using quartz crystals. Although homodyne techniques date
back to the 1920s, it seems fair to claim that much of the current professional interest stems from the work of J. P. Costas,
W2CRR of General Electrics (US) in the 1950s followed by J. R. White, W2WBI, K. Spaargaren, PAoKSB and Wes Hayward, W7Z01 plus a whole decade of ctive amateur experimentation

Vintage c.w.

equipment?

Bob Locher, W9KNI writing in Ham. Ratio suggests that amateur h.f. equip Rid reached its operating zenith in the mid-1950s in the form of such equipment rm's KWS-1 transmitter. He pinpoints what he regards as a subsequent decline in erall performance as starting with the eneral introduction of h.f. transceivers, ollowing the success of the Collins KWM dvantages and size reduction that was possible by combining both transmitter His receiver into a single compact unit. His main complaint with the curren eneration of factory-built equipment
from the viewpoint of a c.w. operator is the absence of any capability to ensure the accurate zero-beating (netting) of the The result ho an incoming c.w. signal. c.w. contacts where the two stations gradually "walk up" the band in tandem, due to each operator retuning at each "over" and difficulties in competitive "pile-ups" because operators cannot accurately place ceiver incremental tuning etc. Even more harmful, in his eyes, is the tendency during normal contacts to occupy two distinct frequency channels, separated by up to There seems
his problem, which no easy solution to degree even where separate receivers and ransmitters are used. The recent high-cost Collins h.f. transceiver type KWM380 minimizing the problem and ensuring of the offset between the transmitted and received frequency is exactly equal to the frequency of the audio c.w. monitor. Even better, Bob Locher adds, would be to the frequency of the c.w. monitor and the offset differential, so that the audio monitor only could be keyed and then adjusted to zero beat precisely the incoming signals. Many c.w. operators would agree that own pet annoyance is the frequent absence of the ability to switch off the a.g.c. system.

Here and there

Very high levels of solar flare activity were recorded around the end of July, resulting in disturbed conditions on the h.f. bands and one of the most pronounced periods of auroral activity ever recorded in Europe,
with stations as far away as Moscow being heard in the UK on 144 MHz . It is, however, now thought unlikely that the reception of southern African signals in Athens on 50 and 144 MHz on February 16 WoAR May) was due to "long-path" direct path.
Roger Appleton, chief engineer of London Weekend Television, has succeeded R. C. Hills, G3HRH (IBA) as president of the British Amateur Television Club exhibition at the Post House Hotel, Leicester on Sunday, October 4 (from 11a.m.) including demonstrations of memscan ty and F, narrow-band $t v$, slow G6CJ's "aerial circus" (on video tape) The FCC is tightening up on its "wai ers" procedure for home computers,
which are providing a severe source of
radio-frequency interference (r.f.i.). Test procedures and maximum permitted levels have been set for both radiated and mainsborne field strength. These regulations are more severe than those for large profes-
sional computers since domestic sional computers since domestic models
are considered more likely to be located close to television and radio receivers. Until recently a number of "waivers" to the regulations have been authorised to give manufacturers time to modify designs. tellite is now expected to be carried on the same Ariane launch vehicle as the European Communications Satellite (ECS) now scheduled for launch on an unspecified date between June and October 1982. cases where bogus or "altered" QSL cards have been submitted by amateurs for the DXCC listing. The suspect cards include a number for contacts made (or claimed to have been made) with "expeditions" in the with past expeditions is alleged to have admitted that 20,000 bogus cards were printed and issued by his group alone.

In brief

A new 70.12 MHz solid-state beacon transmitter at ZB2VHF, Gibraltar has been well received in the UK and on July 19 several British amateurs made contact the very few Eu2BL Gibraltar, one of the very few European countries, apar
from the UK, where 70 MHz operation is permitted . . . RSGB's Senior Rose Bowl rophy for the 1981 Commonwealth Contest has gone to the Canadian amateur ohn Sluymer, VE60U with 480 contacts, number of American states it is illegal to drive a car wearing headphones regardless of whether these block out road noises . Three Canadian amateurs have been experimenting with the use of the 10 GHz band
for mobile operation and have found it possible to make contacts over distances of up to about a mile despite screening from buildings and other vehicles . . . FCC ha pened an enquiry into issuing permits to "advanced class" licence holders to experiment with spread-spectrum techniques in the 50,144 and 220 MHz bandsIn a policy statement, the RSGB has confirmed
that it welcomes c.b. provided that it is that it welcomes c.b. provided that it is suitably regulated; will continue to em-
phasize the differences between c.b. and amateur radio; is prepared to support low power f.m. on 27 MHz with officially-ap proved equipment; welcomes the 934 MHz allocation; and "will do whatever is within its power to prevent c.b. operation within any amateur bands."
PAT HAWKER, G3VA

Linear power-amp offers high stability

Although many amplifiers claim good damping factors, speaker resonance often pedance cables. This amplifier uses a nove output stage with control transistors con nected as quasi-emitter-followers for high inearity. Slave devices provide a voltage to he control transistors about halfway bich helps to share the dissipation and reduce he possibility of secondary breakdown. The amplifier provides a $25 \mathrm{~V} / \mu \mathrm{s}$ slew rate and is unconditionally stable into any loa down to 2Ω. Input and output supply rails
hould be connected at the power supply to eliminate the need for local decoupling. recommended for a maximum output of recom.
$\quad 60 \mathrm{~W}$.
Fig.
Fig. 2 shows an alternative output configuration which uses slave transistors to
dump current into a low power output dump current into a low power output
stage such as a class A or v.f.e.t. as shown. In this circuit most of the dissipation is in the slave transistors.
Q. Rice
New Mald

Surrey
Surrey

Analogue multiplier

A simple high-impedance analogue v.m.o.s. transistors and an op-amp to simulate a resistor which is proportional to $R_{1} V_{\text {ref }}\left(V_{1}-V_{\text {ref }}\right.$). This circuit represents a non-inverting amplifier whose output
Krau
K. Kraus

Czechoslovakia

Gray to binary converter

 When converting Gray to binary, each time a more significant bit is added, the relationship between the previous bits isinverted but the new bit has the same value in Gray and binary. Therefore, a single exclusive-OR gate will convert a Gray code to binary as shown in Fig. 1. For more bits, the circuit can be expanded as shown in Fig. 2. Converting from binary to Gray J. Mouton East London
S. Africa

Fig. 1

Quantifying amplifier sound

Why can we distinguish amplifier sound in listening tests?

by Yoshimutsu Hirata, Waseda University, Tokyo

An important problem still unsolved An audio is the correlation between subjective and objective quantities. Bue it is more important to answer th question of why we can distinguish

 loudspeaker.Audible differences of amplifiers are the
Audible differences of amplifiers are the be. The harmonic distortion of a high quality amplifier is usually less than 0.1%, while the distortion of a loudspeaker is more than 1%. In spite of this we can
distinguish "amplifier sound" from the sound of a loudspeaker and point out differences in the quality of amplifiers. This implies that the distortions in amplifiers and loudspeakers differ in properties. which cannot be expressed by the tot harmonic distortion measurement.
distortion generally does not give good correlation with subjective assessments of sound quality. To give an improved subjective agreement, several methods of proposed ${ }^{1}$. The gap between the subjec tive quantity and the total harmonic distortion measurement is explained to start with by the difference of signals used for tests, viz. a musical sound and a sine-wave sig nal
sient sounds sound involves many tran ally very complicated; see Fig 1 what is vory complicated, see Fig. 1 . hat is nything is common in those waveforms, it anything is common in those waveforms, having no d.c. component. Many waveforms have such properties: Fig. 2 (top) shows the waveform of a model transie sound, $h(t)$, which consists of half-sine and negative waves are different from each other and the area of the waveform above the zero axis is equal to the area below the zero axis. Thus, the asymmetric waveform $h(t)$ has no d.c. component. Fig. 2 also shows a plot of the frequency spectrum of
the waveform where $S_{1}(f)$ and $S_{2}(f)$ are spectra of impulses a and b respectively. At low frequencies the spectrum shows a 6 dB /octave slope. When an amplifier under test alters such a waveform, the area of the axis will be different, in accordance with non-linearity in gain. This difference gives rise to a d.c. component, coupled with a increase of low-frequency components of
the waveform. The spectrum function of the altered waveform can be obtained ma thematically by expressing the non-linear ity in the form of an appropriate equation Effects of several different non-linearimodel signal are shown in Figs 3-7, where $h_{\mathrm{a}}(t)$ is the altered waveform, $\Delta(t)$ the deviation from the waveform $h(t), D_{\mathrm{a}}(f)$ th spectrum of $\Delta(t), S_{a}(f)$ the spectrum of $\mathrm{a}_{\mathrm{a}}(t)$, and so on. An s-type non-linearity low-frequency components of the signal, caught as soft or 'glossy' in listening tests. A soft distortion as represented by an s type non-linearity is sometimes preferred
when the distortion is not too great. Clipping is not an operational non-linearity in the proper sense of the word, but the saturation of a system being overloaded. The effect of clipping on the spectrum is the increasing of both low and high-frequency
and disliked. In the case of a crossove distortion, the low-frequency component increases with decreasing amplitude of the input signal. This distortion is remarkable or a dynamic distortion, take the existortion occasioned by a level compressor. For simplification, assume that the gain of a circuit ${ }^{5}$ attenuated to reduce the amplitude of a positive pulse as in Fig. 6(a). In this case, change, viz. the increasing and decreasing of low and high-frequency components. Unless the functioning of a level compressor and expander is ideal, a noise reduction system produces a similar distortion in an subjectively as somewhat dull or heavy by a listener.
As discussed, gain non-linearities in amplifiers give rise to a d.c. component
coupled with an increase of low-frequency components of an impulsive signal. On th

Fig. 1. Typical waveforms of transient sounds are asymmetric, with no d.c. component.

WIRELESS WORLD OCTOBER 1981
other hand the distortion in a loudspeaker does not, as a matter of course, give a d.c. component. As an example, consider the s ponse of a vibrating plate. To simplify an analysis, assume a sound pressure is in proportion to the velocity of a plate, viz. sound is assumed to be radiated from a infinite plate. For a finite plate, the soun proportional to the acceleration of the plate. The difference between the displacement response $H s(t)$ which is altered by the s-type non-linearity and the ideal response $H(t)$ is expressed by $\Delta_{\mathrm{H}}(t)$. As sound
pressure is proportional to the velocity of an infinite plate, the sound distortion $\Delta(\mathrm{t})$ is given by the derivative of $\Delta_{\mathrm{H}}(t)$ with respect to time. As shown in Fig. 7(c), the spectrum of Δt involves no d.c. compo nent and few low-frequency components
Thus the distortion in a loudspeaker doe not change the low-frequency component of an impulsive sound, which is in contras with the case of the distortion in an amplifier. And this is the reason we can disting uish amplifier sound from the sound of
loudspeaker. This has been verified by experiments using a novel method for measuring non-linear distortion

Experimental method

The model of a transient sound used for the theoretical study consisted of two halfsine waves of different amplitudes and polarites. The model signal was such that it could disunguish distortion due to nonis related with a subjective quantity. It is however not convenient to use the model signal for the measurement of an objective quantity, viz. the rate of distortion
A new method of making non-linear distortion measurements uses composite rectangular pulses, as shown below. The form above the zero axis is equal to the area below the zero axis, so these asymmetric test signals have no d.c. component.

Asymmetric test signals have equal areas above and below axis and so have no d.c. component. Area of a positive pulse of the
first test signal is $V_{1} T_{1}$ and the area of a negative pulse is $V_{2}\left(T_{2}-T_{1}\right)$.

When an amplifier under test alters the applied test signal the areas of the altered waveform above and below the zero axis gain ne different in accordance with the rise to a d.c. component coupled with an increase or decrease of certain low-frequency components of the test signal, either of which can indicate the degree of inearity of the amplifier under test.
The repetition frequency of the test signals is 220 Hz , chosen to lie between the higher harmonics of power-supply fre-
quencies 50 and 60 Hz . At low frequencies the envelope of the test-signal spectrum has a 12 dB /octave slope and the component at 220 Hz , normalized to that of the reference signal, is $0.002(-54 \mathrm{~dB})$ which is the theoretical value in the absence of
non-linear distortion. Thus the difference between the normalized component at 220 Hz of an altered test signal and the theoretical value of 0.002 , indicates the value of non-linearity of an amplifier under test.
When the gain non-linearity is static, i.e. when the $i / 0$ property is expressed by a single curve, the non-linear distortion D
esponds to the linearity deviation Δ. The relationship is

$$
D=\left|\Delta / V^{\prime}{ }_{1}+0.002\right|-0.002
$$

where $V^{\prime}=V_{1}+\Delta$
which is nearly equal to V_{1} for $\Delta \ll V_{1}$. and $D=-\Delta V^{\prime} 1$ for $\Delta V^{\prime} \geqslant-0.002$

The figure of D involving V_{1} indicate directly the form of gain non-linearity, i.e an s-type non-linearity, cross-over distor-
tion, and so on. (Notice that the figure D given by the last equation corresponds with the figure given by $D=\Delta / V^{1}$ which turns up at $D=-0.002$. Thus the lower limit of the $D(\%)$ axis is $-0.2 \%)$. The is shown under the photograph onparatus page.

Results
 Results

One of the advantages of this method is
-

CITIZENS BAND
Mr Frost says in July letters that operators of at the expense of changing to the new system". I can think of a few other groups having "reason -houscbreak
-housebreakers, forced by new lock designs to -radio control aeromodellers, faced with a move to the 35 MHz band;
boat modellers, who have not been given a new band, but are left with one polluted -hy c.b.; \quad. paging systems to avoid 27 MHz c.b. interference - see the letter on
Weekly, May 13th, 1981
After the publication paper in which I contradicted inaccurate statements by a c.b. enthiusiast, objects were thrown from a passing car at my house. For this reason,
I would be grateful if you did not publish my name and address.
Name and address supplied)
DECLINE OF THE
PHILOSOPHICAL SPIRIT The editorial of the July 1981 edition of Wireless ment of science and philosophy by their artificial separation. It is therefore of great importance to consider what practical steps are
available for us to remedy this unhappy situation. Fortunately, the words of the great scientists are full of practical advice on this. For example, Michael Faraday said "Here it is we
are born, bred, and live, and yet we view things with an almost entire absence of wonder to ourselves respecting the way in which all this happens. So small, indeed, is our', onder that we
are never taken by surprise". On a similar theme, Albert Einstein said "The fairest thing we can experience is the mysterious. It is the fundamental emotion which stands at the cradle
of true art and true science. He who knows it not and can no longer wonder, no longer feels amazement, is as good as dead, a snuffed-out
candle." candle." This wonder, which leads to 'natural philosophy, does not have to be acquired, it is there
so obviously in the young child. It might well get covered over by the ideas described so well
in the editorial and cover the physical world. It does seem,
howeren do however, that it can be readily uncovered by the application of the scientific principles to our
everyday experiences. To take a small example, on tuning a radio over its waveband, a large number of stations are heard. It does not take
much reflection to appreciate that the radio is separating and manifesting what is all together in the room. The space in the room is pervaded
not only by countless man-made electromagnot only by countless man-made electromag-
netic signals, but asso by the electromagnetic signals we call light from every body in the room, the magnetic and electric fields of the
earth and beyond, the gravitational influence of earth and beyond, the gravitational influence of
every atom in the universe and so on. Such a reflection very easily turns into wonder.
As demonstrated so clearly by the great As demonstrated so clearly by the great
scientists, this emotional response is not a waste scientists, this emotional response is not a waste
of time but "the cradle of true art and true
science". Their works show the ability to sim-
llify and unify plify and unify previously compli
separate areas of scientific endeavour. It is the duty of those involved in the educasubjects to uncover this findamendal emotion' in the students by what is said, more so by what is done in the laboratory, but most of all by the
feacher's love of his subject. Perhaps in this teacher's love of his subject. Perhaps in this
practical way it is quite possible by our scientific activities to, as Plato put it, "create the spirit of philosophy, and raise up that which is unhappily allowed to fall dow
M. F. Cunningham,

WIRELESS WORLD
1911-1981
Congratulations on seventy years grėat service as I can ascertain, the Technical Library operated by this company for its employees is the only library in Australia with a complete run
from issue number 1 of The Marconigraph to
from issue num
date.
B.f. Simpson,
B. 7 . Simpson,
Chief of Patents,

A malgamated Wireless (Australasia) Lt

JAMES CLERK
 MAXWELL

Mr Wellard, in his article on Maxwell (May 1981) in my opinion spoiled an otherwise in-
teresting article by some outrageously contenteresting article by some outrageously conten-
tious statements which were unsubstantiated in the article and run completely counter to the present day knowledge of atomic and nuclear hhysics.
The ma
The mass ratio of electrons to protons is about
$1: 1820$; but the charge ratio is exactly $1: 1$, but of opposite polarity. The body of experimental vidence for these ratios is extremely strong since the design of mass spectrometers, mass systems (including c.r.ts) and many others depend on an accurate knowledge of the properties of electrons and protons.
His article implies that hydrogen atoms and
molecules are not electrically neutral. The immolecules are not electrically neutral. The imas I am aware, having had considerable experience of ion sources, electron beams and hydrogen gas handling, there is not a shred of evi-
dence to neutrality.

Furthermore the statement about the neutron
'this non-existent particle' \ldots, is also highly contentious. How do nuclear reactors
work if neutrons are non existent? Why do nuclear physicists refer to thermal neutrons and fast neutrons, and the resulting reactor types,
thermal and fast-breeder reactors when, as $M r$ Wellard asserts, neutrons do not exist? Again, neutron radiography is an extremely useful alkernative to X -raying for non-destructive testing
of various engineering parts. How does this work if there are no neutrons?
It is difficult to follow Mr Wellard's logic in
the article when such unsupported
hee article when such unsupported outrageous.
statements are made. If he is keeping some new
important experimental data from the world
then he should publish it properly in some form where it can be scrutininsed and his experiments
repeated, and so be tested for their universality. repeated, and so be tested for their universality.
If, on the other hand, he has no basis for his remarks, except that he does not like the idea of electrons and protons having an equal magni-
tude of charge, or does not like the tude of charge, or does not like the idea of
neutrons, then it is just too bad: they are an observational fact. Many people did not like the idea of a spherical earth or a helio-centric solar system, but both are observational facts, around
which valid models can be constructed. We may not know what a neutron is, since we cannot handle it in the way we can handle familiar everyday things, but its properties can be quan-
ified (e.g. mass) and used for prediction pur-
$\underset{\substack{\text { poses. } \\ \text { Referring now to a letter concerning } \mathrm{Mr}}}{\substack{\text { a }}}$ Wellard's article by H. Aspden, he states that in
1980 experimental 'proof that the aether can assert a force was reported in Nature. Not many of your readers would have access to the article named in Nature, which reports some interest-
ing experimental results, as yet uncorroborated, which may be evidence for an aether (or something) but is not proof as yet. Mr Aspden is a very impressionable person if he considers one
experiment to be proof. The experimental techexperiment to be proof. The experimental tech-
nique will have to be very carefully looked at to ensure that no other phenomenon was responsipeated lesewhere with another apparatus to con-
firm the results. Only then can it be asserted peated chewesults. Only then can it be asserted
firm the red there is enough evidence to provisionally
that that there is enough evidence to
confirm the implication of an aether confirm the impli,
B. F.. Burrows,
B.ex.
Benson,
Benford
Oxd

The author replies.

The question of the equivalence of electrons protons and the hydrogen atom was answered in The equation does not satisfy Maxwell's test and is therefore absurd. The neutron is one half cycle of an electromagnetic wave; the anti-neutron is the other half cycle. They are mathematial myths. The infinite ta--adistance particle generates an ine third
amount of energy. I assume from the paragraph of Mr Burrows' letter that he is an experimental physicist. If he finds his working the working model of a wave, he should carry on as usual; he has no sensible alternative at present. The passing of an examination requires the
unconditional acceptance of a working model and its associated equations. I am suggesting that the working model he was forced to accept was based on the wrong analogy. I am not sug-
gesting that he or any other member of the scientific community is in any way responsible for the constrictions imposed by the mathematical extremism of Lorenz or the entrepreneurial
skill of Einstein. The flaw in any idea or belief is its dogma; identify the dogma and you identify the flaw. As far as I know, a physicist is no with an extreme idea. Mr Burrows writes in plain English and must be capable of plain and open thinking.
Mr Burrows
Mr Burrows is unfair and unwise to include
an innocent bystander in his deprecations. He
asks whether I am withholding new important
experimental data from the world. The answer experimental data from the world. The answer
is no. would have thought that every experi-
ment with an electromagnetic wave ment with an electromagnetic wave proved the
presence of a medium. Does he know the presence of a medium.
whereabouts of another Einstein winhholding
experimental datatathat proves otherwise? Two
books by Dr Aspden received a favourable books by Dr Aspden received a favourable
mention in Dr Essen's attack on Relativity (Ocmention in Dr Essen s attack on Relauivity (Oc-
tober 1978 issue). Both gentlemen are Flat
Earthers. Now that the memory of the late Earthers. Now that the memory of the late
Professor Dingle has joined them, Mr Burrows. Professor Dingle has joined them, Mr Burrows,
is wasting his time seconding me to such an exclusive club.
To prove iust how exclusive this club is, I
have taken a look at Einstein's famous equation have taken a look at E en simens ramous equation
of energy, $E=m c c^{2}$. The dimensions of work or onergy are $M L^{2} / T^{2}$, the work done by wounit of
force $\left(M L / T^{2}\right)$ accelerating trent energy are $M L^{2}$, accelerating through unit of
force $\left(M L /{ }^{2}\right.$
length measured in its own direction. This is mathematically equivalent to the product of a mathematically equivalent to the product of a
mass and the suare of a velocity (LTT) and
men if the velocity to be squared equalled one even if the velocity to be squared equalled one
metre per year, work would still be performed metre per year, work wouls still be performed
by an accelerating mass. Einstein's famous equation has the dimensions of work or energy,
but implies, in fact insists, that work is only but implies, in fact insists, that work is only
performed by an accelerating mass when the velocity to be squared is equal to the 'constant'
speed of light. His equation is speed of light. His equation is meaningless, misleading, and very very slick. Einstein be-
lieved the Earth was round. Does this prove that lieved the Earth was round. Does this prove that
Flat Earthers do not subscribe to the theory of the great philosopher 'Fats'' Waller, "" 'Tain't
what you do, it's the way that you do it - that's what you do, it's the
what tets results."?
What gets results.
Mi Rurros asks some awkward questions in
his fourth paragraph. Why not leave the microhis fourch paragraph. Why not leave the micro-
scopic dictatorship of nuclear physics and rry the scopic dictatorship of nuclear physics and try the
macroscopic democracy of astronomy, looking for analogies that do not allow energy to disap-
pear? It has been suggested that this universe is pear? It has been suggested that this universe is
the inside of a huge spherical atom. Taking the nanlogy further, a radioactive atom would be
filled to bursting point with colliding quasars and the resulting big bangs and young galaxies. Quasars are continuously losing a vast amount
of energy. Are they transformed from electromagnetic waves when the waves are absorbed, and transformed back àgain into waves when
hey are emitted at a lower energy level? Are hey are emitted at a lower energy level? Are
they by analogy massive radioactive atoms
 tron starr or helium atoms? Are there interme-
diate-size groups of atoms between the Earthly diat--size groups of atoms between the Earthly
and the Universely? How many universes are there? As many as there are atoms in our universe? Would over 200 'particles' be emitted if a
radioactive universe disintegrated? Wireless World regrets the decline of the philosophical spirit, and so do I.
"TRUTH TABLE" LOGIC SYMBOLS
There are many disadvantages in the system of
intentional logic symbols (November intentional logic symbols (November 1980 issue, pp 61-62), the main ones being that once
away from input stimulii no "true or assertive state" exists unless the circuit is further complicated by adding some form of flag to indicate an
artificial "true or assertive state" at that point. In any case it is doubtrul whether doubling the number of different symbols used can make iagnosis simpler, especially atical gates There is a much simpler
lem, that of what simpler solution to the prob-
Tabele logic symbeos. As as Truth Table logic symbols. As far as I am aware the
Idea is original but I have not researched the idee is original but I have not researched the
matter. Fig. 1 shows the derivation of the

Fig. 1

Fig. 3
symbol from what I have described as the singular logic state of the simplest form of the truth table. The gate outine shape is of no great impor-
tance provided its input and output are clearly distinguishable (this excludes the rectangular box as per B B33399.) Each input has a logic state
associate with it (TT input state) and each associated with it (TT input state) and each
output a logic state associated with it (TT output state). In order to produce the TT output state it is necessary to make all inputs equal to
the TT input state. It does not tax the brain too much to deduce that, to get the opposite state out, any state other than all inputs equal to the TT input state will do. If a gate is in an application where, for example, a signal is input to a
gate and the other inputs are used to enable that gate and the other inputs are used to enable that
gate then the gate will be enabled for that signal
hen all other inputs are equal to the TT input then all
state.
Fig. 2(a) shows the problem as stated by Mr
Cassera in his Cassera in his November article on intentional logic symbols. Fig. 2 (b) shows how it would be
drawn using TT logic symbols. In order to enable gate 3 inp. In order to enable gate 2 the output of gate 1
must be 1 . Both are in must be 1. Both are immediately obvious from must be equal to the TT input state.
must be equal to the TT input state.
To get 1 out of gate 1 any combination of A
and B will do other than all and B will do other than all 1 s . This follows from the fact
output state.
The absence of the inverting symbols may
. worry some engineers used to conventional
symbols but a NAND gate is only inverting because of the way the AND is defined. Few enginerrs would be entirely happy with this explanation but they can take comfort from the
fact that is is extremely easy to tell convenfact that is is extremely easy to tell conven-
tionally inverting from conventionally non-
inverting gates in the inverting gates in that for inverting gates the TT
input and TT output states are different implyinput and in inverion.
The EXS states are difrerent imply
Ind The EX-OR and EX-NOR gates present a
choice of symbols as shown in Fig. 3. If starting choice of symbols as shown in Fig. 3. If starting
from scratch one would choose Fig. 3 (a) and
Fig. 3(c). Unfortunately Fig. 3(c), the symbol
for an EX-NOR, is too similar to the conventional EX-OR symbol, therefore Fig. 3(d)
should be used for an EX-NOR. This would be interpreted that in order to get 0 out the inputs must be not equal. Either 3(a) or 3(b) could be used for EX- $\mathrm{OR}, 3$, (a) being preferred on the
grounds of simplicity. To summarise grounds of simplicity. To summarise, the
system is very simple, is very largely self-explasystem ion very simple, is very largely self-expla-
natory, and requires little mental effort to
change from existing practice change from existing practices. All identical
gates have identical circuit symbols, the gates have identical circuit symbols,
symbols themselves being uncomplicated.

Callington
Cornvall

TELEVISION AND THE

 DEAFI have been interested to read the correspondence about amplifying tv sound for the deaf.
Some years ago I was asked to help a deaf friend with this problem. A great deal of amplification was required but it was obviously going to be an
advantage if normal hearing people could follow advantage if normal hearing people could follow
the programme without being blasted out of the the programme without being blasted out of the
room. Amplified headphones are not sufficient as the sound loses qualitiy compared wifth that
from a properly made earpiece with a mold from a properly made earpiece with a mould
made specifically for that person's ear. In addimade specifically for that person's ear. In addi-
tion many hearing aids have some form of equalization to try to compensate for hearing
response curves changing with frequency. response curves changing with frequency.
It seemed to me that the answer was clear: use It seemed to me that the answer was clear: use
ready in thication, equalization and earpiece already in the e opssession of the deaf person. Many
hearing aids have some form of telephone pickhearing aids have some form of telephone pick-
up coil and maybe some switching to allow up coil and maybe some switching. to allow
"mic", telephone or both. Fortunately the Sony
television to be used was equipped with both television to be be used, was equinapeed with both "listen" and "break" miniature jacks; giving the option of "silent" or ioint listening. Provid-
ing a signal to drive the telephone pick-up was
then very easy: a small coil fed from the earhen very easy: a small coil fed from the earphone iack gave more than enough level. I used
$\mathrm{a} 1 \mathrm{k} \Omega$ Post Office 3000 relay coil to prove the
system, but as this was, to say the least, somewhat clunky, I replaced it with a small plastic
covered coil marketed as a telephone pick-up covered coil marketed as a telephone pick-up
but, of course, used in the other direction to but, of course, ussed in the other direction to
that intended! All that needed to be done was to extend the lead.
d has the advantage of being This method has the advantage of being
cheap, safe, and very good quality. It is easiest
to use with body worn hearing aids but even to use with body worn hearing aids but even
deaf people using ear-level aids often have second, body worn aid as a spare.
Incidentally, I have Incidentally, I have also used a telephone
pick-up coil to detect the ringing current in the poil of a telephone tetect the ringing surrent itably amplified and
rectified this rectified this can be used to control flashing
light repeaters without interfering with the Post light repeaters without interfering with the Post
Office installation. A few resistors, a 741 , a diode and a BC108 to drive a relay are all that i $\xrightarrow{\text { required. }}$ Roger Dery
Leytonstone
London E1I
RADIO AMATEURS ${ }^{\prime}$
LICENCE
As a citizens' band service is now proposed we the undersigned, would like to suggest slight
modifications to the radio amateur licence, as follows:

1. The use of c .w. by class " B " radio amateurs
receiving receiving and sending as part of the self-trai
in communication by c.w. on v.h.f. bands. 2. Limited use of station under supervision, e.g.
ambore-on-air, radio conventions, radio clubs, short wave league, XYLs, YLs etc.
2. The 27 and 930 MHz c.b. bands to be used by radio amateurs on the existing licence at no
extra fee. Not type anproved rigs extra fee. Not type approved rigs.
3. The 10 and 4 metre amateur extended to class " B " radio amateurs; e.g. the 10 metre band to be used by liciensed. radio
amateurs, not taken over by citizens' band. amateurs, not taken
Dewsbury
Also GgWWE G4LED, G3LHQ, G8PSE, Also G8WWE, G4LED,
G8EAH and 460 others.

MICROCHIPS AND

MEGADEATHS
I have no intention of cancelling my order for Wireless World as a result of your recent trend in editorials, but when I read some of the criticism
against this, I sometimes wish I could cancel my subscription to the human race.
The electronics engineers referred to by Dr D. J. Dewhurst in June letters died, along with
millions of others, in the hope that humanity millions of others, in the hope that humanity
would never again have to devote its time to would never again have to devote its time to
finding ways of destroying itself. Instead what is happening? The USA alone is
planning to spend $\$ 1,500,000,000,000$ on using our technology to produce still more weapons of our technology to produce sull more weapons of
death. That is about 350 dollars for every man woman and child alive on the earth. That money tion, and I haven't even mentioned the Soviet Union and dozens of smaller countries yet! It is up to us, as engineers and as ordinary
people, to stand up against this. We must all throw down our arms and say that we will not fight their wars for them. And if I, for one, get shot as a result, it will just prove to me that ghis
world was not the one I wanted to go on living
in. Who will stand beside me?
Tim Bierman
London $N W 11$

BETTER RFI

PROTECTION NEEDED
As a radio amateur,'I wholeheartedly agree with
Mr McLeod's observations (August Letters that better r.f.i. (or e.m.c.) protection is needed for domestic electronic equipment. The prob-
lem of r.f. breakthrough is nothing new: it has lem of r.f. breakthrough is nothing new: it has
existed for many years, but has become more existed for many years, but has become mor
prominent recently due to the number of illega prominent recently due to the number of illegal
27 MHz a.m. c.b. transceivers now in this country. Unfortunately, the manufacturers of domes tic electronic equipment are unlikely to respond to Mr McLeod's plea for better r.f.i. protection
The design effort and extra compent The design effort and extra components re-
quired would not be expensive, but the added cost would, no doubt, reduce their profit margin and/or competitive pricing. I can see two possible answers to the problem: (a) Iegislation
to ensure that all domestic electronic equipment to ensure that all domestic e electronic equipment
complies with a suitable e.m.c. standard; or (b) commercial pressure, i.e. bad publicity - if you
have suffered with r.f. breakthrough, you are have suffered with r.f. breakthrough, you are
unlikely to buy the same make of equipment unlikely to buy the same make of equipment
again. You would probably look for equipmen which is better protected against r.f. breakIf there are any manufacturers whose pro ducts have are any mand e.mufacturers whose products have a good e.m.c. perrormance, then
they should say so. I am sure there are lots of customers in m
their products.
P. F. Forshaw,

Runcorn,

FILTER TRANSIENT

RESPONSE

Thank you and Mr Hamill very much for the much-needed article on the "Transient respons of audio filters" in the August issue of Wireless
Worrd In De
"An December 1977, I wrote an article entitled "A transient phase?" for Hi Fi Answers in which phase distortion), and followed this up with a
more descriptive article in Hi Fi Answers, August 1978, entitled "Transient phase distor-
tion".
Although for the sake of ci'gity in these partiAlthough for the sake of ci'o ity in these parti-
cular articles I confined the description of effects and equipment to fairly simple things, understandable to the average man in the street,
I had in fact investigated the effects of impulses and their responses, and their relationship to real music responses, and their relationship to
asing a "Fast Fourier"
Tring Transform analyser (as well as the storage e scope
and v.l.f. signal generator mentioned in the and v.l.f. signal generator mentioned in the
articles) and I very much agree with Mr Hamill articles) and very much agree with Mr Hamil
that frequencies are produced which bear abso lutely yo relationship to any Fourier component
present in the original signal - in fact the pitch present in the original signal - in fact the pitch
is completely out of tune when a filter is used to limit the bandwidth, and noticeably so if the filter is at all "steep cut". Unlike Mr Hamill, bandwidth limitation from a truly musical viewpoint. This approach led me to conclude that both high-and low-frequency band limiting filt-
ers are detrimental, but that gentle h.f. filtering is not seriously degrading because air itself can act as a h.f. filter and often does so, thereby
cuusing the ear to be used to the effect of mild causing the ear to be used to the effect of mild
filtering which filtering, which just
troduced artificially.
Again, unlike Mr Hamill, I have found
conclusively that I.f. filtering is very detrimental conclusively that 1 I.f. filtering is very detrimental
to realism in reproduced sound. It too has its to realism in reproduced sound. It too has its
natural counterpart, which takes the form of
large areas of carpet suspended vertically close
to the listener in the to the listener in the concert hall (to either side
and and rear I should point out!), or replacing the
concert hall by a room 13ft square, say. Unfortunately, almost all reproducing equipment cuts off steeply below (at best) 45 HH in an average
domestic living room, so the effects of filtering domestic living room, so the effects of filtering
below this frequency are normally minimal as below this frequency are norrmally mining
they are swamped by the inherent cut-off. However, my system - demonstrated a
"The" loudspeaker at "Hi-Fi The" loudspeaker at "Hi-Fi 80" and
recorded/photographed in July 1980 Hi Fi ' News, page $52-$ is truly flat down to four hertz in a room $161 / 2 \times 12 \mathrm{ft}$ (although this is not at all and $-21 / 2 \mathrm{~dB}$ at 4 Hz in relation to
and $40 \mathrm{~Hz} / 400 \mathrm{~Hz} / 4 \mathrm{kHz}$. For a good signal (which is not all that hard to come by on records!! it is very noticeable if the frequency response is ou
at 20 Hz or left to go down to 4 Hz flat, and the rate of cut is also critical between these figures The effect of the filter is to remove spaciousnes range allowed to pass through to the ear can clearly hear the building boundaries, both their position and composition (the difference concert hall is very clear and real). Often air
cone recordings sound as if they are in the open air, not in the listening room. As soon as the 20 Hz
filter is inserted all this disappears. The subiec tive effect is of an inferior performance, with both precision of tempo and accuraracy of tuning or pitch affected a noticeable degree, and a remo
val of all that is considered "good" in the val of all that is considered "good" in the
concert hall acoustic (as if the Colston Hall, for example, had been replaced by a large garden shed and the London Philharmonic Orchestra were replaced by the local youth orchestra). Of
course, many recordings do not have the necessary range anyway, but many do, and it is such a pleasant surprise when this happens and realism comes through!
Wratford
Hers.
Herts.

'SPREADING'

The amateur fraternity here in Australia, and I suspect that it is much the same in other parts of ridiculous superstition known as "spreading". ridiculous superstition known as "spreading",
I should here explain for the general reader that the amateur fraternity these days employs
almost exclusively the mode almost exclusively the mode of transmission
known as "single-sideband, suppressed-carrier", where the signal, before transmission, is passed through a band-pass filter restricting the
bandwidth of the transmited sideband to abur 3 kHz .
The su
when a very strong signal is I refer surfaces receiving operator notices that he obtains an "sindication on his signal-strength meter over perhaps 8 or 10 kHz on the dial of his receiver.
The operator j umps to transmitting station is actually radiating energy over a bandwidth of 8 or 10 kHz . Vain to tell them that this is an effect occurring in the re-
ceiver itself due to a combination of the effect of selectivity and a.g.c. Invariably, the transmitting operator is abused, and accused of negli-
gence and incompetence gence and incompetence.
I am wondering whether other readers of
Wireless World have encounterd tion and if so what they make of it.
tion and if so
R. Carleses,
Chatestown,
Hers.

Charlestown,
N.S.W.,Australia
 1 .

Digital, multi-track tape recorder

Uses modified audio cassette deck for very low-cost, 12 channel recording
by A. J. Ewins, B.Tech., Research Department, London Transport

In applications where multi-track recording of experimental data is needed, but where several tape speeds and a wide bandwidth are not essential, a conventional f.m. luxury. This design uses a slightly modified Linsley Hood audio cassette recorder as the heart of a multi-track digital tape recorder. It can handle 2, 4,6 or 12 channels with bandwidths
of up to 42 Hz and with zero wow and flutter.

In the field of electronic data collection and storage, that is the recording of signals from various electrical transducers with bandwidths of from zero to several kilohertz, the f.m. instrumentation tape re-
corder has played an almost unequalled role for many years. Perhaps because the market for such machines is small, they have become very complex, possibly in an attempt to answer every user's needs in just one design. The result of this is that track machine using one-inch magnetic tape and operating with a range of six tape speeds can cost over $£ 20,000$. Reels of oneinch tape are also very expensive! Less-
complex f.m. tape recorders are available that use quarter-inch tape, operate with a reduced range of tape speeds and with a reduced number of tracks, but which may still cost several thousands of pounds. One of the main reasons for the f.m. i.t.r.'s expense is the very advanced tape
deck used. In f.m. tape recorder designs it deck used. In f.m. tape recorder designs it
is necessary to reduce the wow and flutter content of the tape deck to a minimum to obtain a reasonable signal-to-noise ratio, since any wow and flutter of the recorded
signals looks like frequency modulation signals looks like frequency modulation an unwanted signal, or noise. Another reason for the high cost of f.m. recorders is that, to achieve multi-track recording, very expensive multi-track recording heads must be used. Nevertheless, in spite
of these comments, when used to its fullest extent, the multi-track, multi-speed f.m. i.t.r. has yet to be bettered. There are instances, however, when multi-track (or multh-channel) recording is needed, but without the need for a multi-speed option. To use an f.m. i.t.r. for this purpose, simply because it is the only type of machine vailable to offer multi-channel recording,
attempt to meet this need that the author has designed the multi-channel, digital tape recorder that is the subject of this article. Essentially, a multi-channel machine cess of 50 Hz was needed. A single-speed machine could be tolerated, provided it was possible to obtain wider bandwidths for each channel by reducing the number of channels available: digital techniques
make it simple to do this. Another requirement was that the signal-to-noise ratio for each channel should be as good, or better, than that possible by f.m. recording. Again, digital techniques make it possible noise ratio by simply digitizing the analogue signal to the required number of bits. It is also possible, using digital techniques,
recorded data eases the need for a tape deck with superior mechanical qualities, and the possibilities of using a cassette tape
recorder were therefore considered: such recorder were therefore considered: such recorders are cheap, compared with reel-
to-reel machines, and tape cassettes offer the cheapest recording medium possible. To remove wow and flutter from the recorded data, the long-term speed stability of the tape must be accurately controlled. Commercially available cas-
sette tape recorders for the hi-fi market are not easy to modify and it was thought that the best solution would be to obtain a recorder in kit form. There appeared to be only one such instrument available-the Hart version of J. Linsley Hood's excellent
design. This did indeed prove to be the design. This did indeed prove to be the
solution, for it was simple to modify the motor and speed control system of the

Fig. 1. Data is in non-return-to-zero (NRZ) form at input of recorder. Two possible encoding systems are bi-phase and Miller code. Miller has lower frequency content, allowing twice as much recorded data, but needs more extensive decoding circuitry. Higher data capacity considered to outweigh disadvantage of circuit outweigh disadvantage of circuit complexity.

o completely remove wow and flutter rom the recorded data. This is very easily one if the digitized data is played back econstructed into analogue form However, the author's requirement was to remove it completely from the reconsRemoving wow and flutter from the

VFL 910 deck used in the Hart kit. Since VFL 910 deck used in the Hart kit. Since cheap instrumentation tape recorder is therefore feasible.
Replacing the front panel of the Hart recorder with one of 19 in wide and 3 U height ($51 / 4 \mathrm{in}$) made it possible to fit the
recorder into a standard 19 in instrument case. In the photograph of the complete instrument, the Hart recorder is mounted in a 19 in case of 6 U height ($101 / 1 /$ in) with
the digital electronics mounted in a rackthe digital electronics mounted in a rack-
ing-frame beneath it.

Specification
Before going on to a detailed description, the specification achieved by the prototype design is presented here so that readers
may appreciate its qualities and limi-

IRELESS WORLD OCTOBER 1981
ations. Twelve channels of analogue data bandwidth of 70 Hz (allowing for antialiasing filters); six channels are recorded on each track of the 'stereo' cassette re-
corder. Six, four or two channels can be used, with consequent increased bandwidths of $140 \mathrm{~Hz}, 210 \mathrm{~Hz}$ and 420 Hz , respectively. Recorded data is reconstructed into analogue form on playback, with a achieved by digitizing the analogue data achieved by digitizing the analogue data
into 10 -bits. (Data words of 12 bits length are used, 2 bits being allowed for parity
checks.) Wow and flutter content of the checks.) Wow and flutter content replayed analogue signals is zero

An important parameter of any instrumentation tape recorder is its response to imperfections in the quality of the tape and also to vibration. Many such i.t.rs are used in the transport industries and ar therefore subject to considerable vibration

Complete multi-track tape recorder. Top
half is modified Linsley Hood cassette half
deck.

The effect of both poor-quality tape and excessive vibration is to produce a momentary signal drop-out, resulting in a 'glitch' in the recorded data, the importance of which depends very much on the type of analysis that is subsequently carried out on the data, and which in some cases can be
very embarrassing. Digital recording techviques are very much more sensitive to both these faults and it was therefore with some trepidation that the author embarked on such a design using a relatively cheap cassette-recorder and cassette tapes.
It is possible to eliminate the problem of tions are not extensive, by distributing the serial data stream across several tracks of the tape and by using advanced error de tection and concealment techniques.

It was not practical to attempt such so phistication in a relatively cheap recorder. ion of alitcmpt at eliminating the gener consisted of adding two parity bits to the 10 bit data word. In the event of a parity rror being detected in the played-back ata, the output signal of the particula he last correct data word. The author' xpectations of this simple error-detectio system have been more than satisfactoril alised! using good-quality cassette tapes han five Maxell UDXL II, typically les ne channel in 30 minutes of recorde data, with the recorder in its two-chann ode. Nearly all the glitches occurred half a mining and end of a cassette ated from each end of the cassette would appear that most would be re moved.

In an attempt to assess the recorder's shaken by hand - to and fro side to side and back and forth. No glitch in the replayed data was observed. The cassette deck is, however, sensitive to rotation about the capstan's axis. Whilst the autho appreciates that this vibration test meets ponse (or lack of it) is better than some i.t.rs within his experience.

Design philogophy

To record the outputs from a number of analogue channels, digitally, on to one track of a tape-recorder they must be multiplexed, converted to digital words, data, and suitably encoded. The first decision to be made was the method by which the serial data stream should be encoded. The need for encoding arises from the fact

IRZ digital data directly onto tape, be cause long strings of zeroes or ones would contain a strong low-frequency content. Also, with no changes in the signal level taking place, there is no information being generated from which to recover the clock
frequency. Because of the inability of conventional recording techniques to record signals down to zero frequency (20 Hz is about the best lower limit of a good directrecording tape-recorder) and the need to be able to extract the clock frequency from
the recorded data, it is essential that the serial data be encoded in such a way that frequent changes occur in the outpu voltage. However, to maximize the recording density of the tape, these change sible
bi-phcoding systems were considered bi-phase encoding and delay modulahows a serial stream of code). Figure 1 zero (NRZ) data and the resulting to zero (NRZ) data and the resulting out phase encoding results in a positive signal transition at the centre of 1 cells and a negative transition at the centre of 0 cells. Miller code is simply bi-phase encoding tion at the centre of a 1 cell and between adjacent 0 cells: the direction of a transition in Miller code is unimportant. In bi phase encoding the highest fundamenta frequency present in the encoded data (ig-
noring harmonics) is that of the clock oscil lator. In Miller code, it is half that of the encoding clock oscillator. The lower fre quency content of the Miller-coded data compared with the bi-phase coded data, the main advantage of Miller code. I be recorded on tape, within a given band width, using Miller code than by using bi hase encoding.
Miller code does, however, have disad vantages. It is relatively simple to extrac he clock frequency from encoded bi-phase required to decode Miller code and to extract the clock frequency is very much more complicated. It is also desirable that the sequence $1,0,1$ be included in the
NRZ serial data stream since, in the ab NRZ serial ata stream since, in the ab-
sence of 1 s or 0 s , a string of encoded 0 s looks exactly the same as a string of en coded 1s. However, there is a phase dif ference between encoded 0 s and 1 s which the data. The sequence $1,0,1$ in the en coded data produces a unique time gap between signal transitions and thus cor rectly sets the Miller decoder for decoding s and 0 s. To determine which encoding system should be used, the author had to
decide between circuit complexity and high data capacity or relatively simple circuitry with reduced data capacity: the de cision in favour of a higher data capacity le clock-recovery circuit and Miller de d Miller de
One of the advantages of digital recording is that the recording proces dias not need to be tineazed by using rizing circuitry, there was no reason to modify it.
Since
Since the frequency response of the re-
corder extends to 15 kHz it was corder extends to 15 kHz , it was expected
that it would cope with encoded data whose highest fundamental frequency was of the order of 12 kHz . Using Miller code this meant that a bit rate of $24 \mathrm{kbits} / \mathrm{s}$ could be handled, using a clock oscillator of
24 kHz . To determine the number of channels that could be multiplexed and recorded on one track of the cassette recorder, a number of requirements needed o be considered, with an ultimate bit rate
of 24 kbit as the objective: the minimum required each channel,

- the desired signal-to-noise ratio, - the number of parity bits per data word, - the inclusion and length of a synchroniFirst, the minimum of 50 Hz . To allow for antialiasing filters, this meant a sampling rate of 4 to 5 times the bandwidth, say 250 Hz . Second, a signal-to-noise ratio of 60 dB was
considered desirable, which could be i.t.rs., the signal-to-noise ratio is the ratio of the peak signal level to r.m.s. noise level. If the ration of r.m.s. signal level to the r.m.s. noise level is taken, 10 bits pro-
duces a signal-to-noise ratio of only 57 dB). With 10 bits for the data an additional 2 bits for parity was thought sufficient, making a total of 12 bits per data word. Eight channels of 12 bit data words, sampled at a
frequency of 250 Hz , produces abit rate of precisely $24 \mathrm{kbits} / \mathrm{s}$. However, as mentioned earlier, the sequence $1,0,1$ is needed in the data stream so that the Mil-ler-coded data can be decoded: a synchronization word in the data stream at regular
intervals allows for this. It also allows correct synchronization of the data on replay and de-multiplexing. To insert a sync, word into the data stream, without interrupting its steady flow, temporary storage buffers are needed for the data. Two
clocks also become necessary - one to clocks also become necessary - one to
clock the data into the buffers and a second, faster one - to clock the data and sync. word out. The ratio of these two clocks will be $(x \times 12):(x \times 12)+y$ where x equals the number of channels and y word. With 6 data words of 12 bits and a sync. Word of 8 bits this ratio could be very
conveniently made $9: 10$, i.e. $(6 \times 12)=72$: $(6 \times 12)+8=80$. A common crystalcontrolled oscillator of $3,2768 \mathrm{MHz}$, divided down by 16×9 and 16×10, gives
frequencies for the two clocks of $22,755.5$ Hz and $20,480 \mathrm{~Hz}$ respectively.
The faster one is referred to as the tape clock, since it runs at the rate at which the
data, plus sync. word, is encoded on the data, plus sync. word, is encoded on the
tape-recorder. The slower one, running at the rate at which data alone is handled, is the data clock. The tape clock, at $22,755.5$ Hz , is very close to the aimed-for bit rate of $24 \mathrm{kbits} / \mathrm{s}$ and is the closest that can be
achieved using standard crystals. For this achieved using standard crystals. For this
reason, and because of the convenience of a 9:10 ratio for the data and tape clocks, it was finally decided to record six channels per track of the cassette recorder. With a
data clock of $20,480 \mathrm{~Hz}, 12$ bit data clock of $20,480 \mathrm{~Hz}, 12$ bit data words
and 6 channels, the sampling rate per and 6 channels, the sampling rate per
channel works out at 284.4 samples/s, which makes possible a bandwidth per channel of around 60 Hz to 70 Hz .
To be continued.

Literature received

Twenty four application notes from Datalab present information on the use of their transient lators, tape punches and graphics terminals. Copies are obtainable from Data Laboratories td, 28 Wates Way, Mitcham, Surrey CR4

1981 Samtec catalogue contains 44 pages of pange of plugs, sockets, jumpers and terminal strips, Write to Symec Electronics Ltd, Lexden odge, Crowborough Hill, Jarvis Brook, Crow-

Single, dual and triple-rail power supplies, nounted on Eurocards and covering all stanero, who describe them in a new brochure, vailable from Vero Systems, 362A Spring
Road, Southamptor SO9 50D. WW403

Ambit International have changed the name of Reir components catalogue to 'The World Of quarterly. Items stocked will, they say, complement their magazine. Price is 60 p , but the catalogue contains three $£ 1$ vouchers. Ambit are at
200 , North Service Road, Brentwood, Essex

CM14 4SG.
Metal-film resistors from Mullard are well
described in a coll described in a colour leaflet, which can be Torrington Place, London WC1E 7HC.

Catalogue covering a range of ceramic, chip and mica capacitors is available from RRS Capaci-
tors Ltd, Orchard Works, Vencourt Place, Hammersmith, London W69LZ.

WW405
Publication from ICI discusses the cleaning and drying of metal, glass and plastics components using Arklone \mathbb{W} solvent in special plant using Arrone solvent in special plant.
Copies from ICI Solvents Marketing Department, ICI Mond Division, PO Box 19, Runcorn, Cheshire WA7 4LW. WW406

Data conversion equipment is the subject of a short catalogue from Micro Networks. It in-
cludes
brief
description cludes brief descriptions of digital-analogue-
digital converters, track hold amplifiers, instrumentation amplifiers and complete systems. The company is represented in the UK by Pascall Electronics Ltd, Hawke House, Green
Srreet, Sunbury-on-Thames, Middlesex TW16
6RA. Street,
$6 R A$.

Catalogue of software for CP/M-based computers is available from Transam. Programs in-
clude those for general office work, business clude those for general office work, business
and accounting and scientific operations. Languages include several varieties of Basic and
Pascal. TCL Software, 59161 Theobald's Pascal. TCL Software, 59/61 Theobald's Road,
London WC1.

WW408
Catalogue of general electronic components from Vako contains descriptions of a wide range
of discrete and integrated semiconductors, displayscte passive compognents and hardware, in-
ind cluding a large section of loudspeaker drive
units. Write on company letterheads to Vako Electronics Ltd, Pass Street, Werneth,
Oldham, Greater Manchester $\mathbf{O L} 6 \mathrm{HZ}$

Short catalogue by Burr Brown on and converters, amplifiers, analogue circuit functions, power supplies and fibre-optic data links.
Burr
Brown Burr Brown International Ltd, Cassiobury
House, $11-19$ Station Road, Watford, Herts House, $11-1$.
WD1 IEA.

Selection of switches from Lorlin is described
in a new catalogue. Types shown in a new catalogue. Types shown are rotary, lever rotary, lock switches, p.c.b. types, sliders
and mains switches. Catalogue from Lorlin and mains switches. Catalogue from Lorlin
Electronic Co. Ltd, Daux Road, Billingshurst,
Sussex RH14 9SW.

The cartridge alignment problem

A new approach

by R. J. Gilson, M.I.Mech.E.
 designed for minimum tracking error and hose not really designed for anything at all
"Pickup arms vary wildly in their geometry
and few are properly designed." "Current techniques for cartridge
alignment are based on completely false assumptions and achieve ...not alignment but misalignment."
"At present the importance of accurate arm alignment is highly under-estimated." "If the arm geometry is wrong (sic) it can
only be due either to cussedness or plain only be due either to cussedness or plain

Strong words indeed! The most common ground of condemnation is that the amount of stylus overhang and head offset is insufficient to achieve the lowest possible tracking error distortion, over the playing area of a 12 record. The mathesible tracking error distortion has been examined by a number of people prominent amongst whom were Bauer and Baerwald more than three decades ago. These approaches have been well publicised and
it seems to be the essence of the pundits' criticism that manufacturers are too ignorant, obtuse or disinterested to take notice of these well known methods of

mum" overhang, in the sense of achieving
lowest possible tracking errors (see appendix) gives an h_{0} of 17.9 mm , for $R=146$, $r=60, L=221 \mathrm{~mm}$, where R and r are outer and inner groove radii, which agrees with expectations from the graph of Fig. 1.A nore recent rule (Stevenson, May, June appendix). Another widely publicised rule is to set zero tracking angle error at radii of 121 and 66 mm . The overhang figure necessary to meet the requirement of zero angular error at any two radii can be calcu-
lated from equation 3, and for $C=203$, $R=121$ and $r=66 \mathrm{~mm}$ gives $h=18.8 \mathrm{~mm}$ which is in close agreement. Randhawa in WWW March 1978, proposed overhang and offset figures comparable to those given by
Bauer, although if anything slightly higher. The actual figure proposed for an 216 mm value of L, is 16.5 mm , which is somewhat smaller than the above figures because a smaller value of r has been as The i.e. 54 mm in place of 60 mm . The next step is to evaluate the corre-
sponding offset angle which will average out the angular errors to best advantage. (This is, of course, provided automatically

Iby adopting the two-point zero error meth
od as instanced by formula 3, but in the more general case it is necessary to find th optimum offset angle for any selected
opal optimum offset angle for any selected
value of overhang.) Looking at Fig. 2 again, there are three potential points of
maximum angle error, i.e. outer radius, maxner radius, and intermediate radius a which β is a minimum. This last, the radius for minimum β, can be calculated from $R_{\text {min }}=\sqrt{L^{2}-C^{2}}$. For the curve in Fig. 2
for $h=20 \mathrm{~mm}$, if the ofset ande were to for $h=20 \mathrm{~mm}$, if the offset angle were to b set at 25°, tracking angle errors would be
$\times 2,-0.4$ and $\times 2.5^{\circ}$ at inner, $R_{\text {min }}$, and $\times 2,-0.4$ and $\times 2$. perspective, notice that distortion due to tracking error is proportional to angular error and inversely to groove radius, so we
need to convert the angle errors to degrees per unit of radius i.e. $+0.33,-0.06$ and $+0.17^{\circ}$ per cm of radius. Obviously this is not the best that can be done, and the figure of 25° for offset angle needs increasing a little. The best value could be
found by trial and error, or calculated from formula 4 a , see appendix.

Lateral bias forces

It is an unfortunate fact of life that with a pivoted arm moving in an arc, there must
be a side force acting on the stylus tip be a side force acting on the stylus tip
which becomes greater with increasing overhang. The basic conditions are set out
in Fig. 3, where F is the side thrust resultin Fig. 3, where F is the side thrust result ing from the angular difference between
the directions of stylus drag D and resisting pull P. Taking moments about the arm pivot, force F can be evaluated in terms of drag D by $F=D \tan \beta$. Values of F / D are plotted in Fig. 4, which shows F can reach 50% of the drag D with 18 mm overhang
The normal method of dealing with thi The normal method of dealing with this side thrust is to apply an opposing outward
torque or bias to the arm, but it seems not to be generally appreciated that such compensation is very much of an approxima-
tion. To understand this, examine the drag tion. To understand this, examine the drag factor carefully. Tangential drag
composed of a number of elements. composed of a number of elements.
Frictional drag. With 45° grove walls, stylus loading on each wall is 0.7 of th down force, so that frictional drag will b $1.4 \mu w$, where μ is the coefficient of fric
tion and w the down force or trackin weight. In addition to straight sliding friction, there will be "deformation drag" due to the elastic deformation of the disc material at the stylus contact point, and it seems reasonable to estimate nat the somewhere between say 0.1 minimum and 0.3 maximum, depending on stylus shape and finish, and disc surface finish. Thu the total frictional element of drag D could be between about 0.15 and 0.4 of the down
force. In principle, this frictional element is independent of groove velocity Modulation drag. In addition to the frictional element which applied to an unmo dulated groove, there will be further drag
due to modulation of the groove. This due to modulation of the groove. This
modulation element can be sub-divided modulation element can be sub-divided compliance drag and transducer drag.
Inertial drag is due to the energy absorbed

WIRELESS WORLD OCTOBER 198 mechanical engineering principles. I roove will impose more drag than lightly modulated one, and bearing in nind the high acceleration figure hat modulation drag might reach a peak hat modulation drag might reach a peak
value of say 30% of the down force. (Mod ulation drag is not in fact directly in luenced by down force, but in practic racking weight or down force is affected by stylus mass and mechanical impedance, related to minimum tracking weight. Adding frictional drag to the assumed modulation drag, we get a total stylus dra arying from a minimum of perhaps 15% of down force up to a peak maximum of
perhaps 60% or more. With 18 mm overperhaps 60% or more. With 18 mm over hang giving an F / D ratio of approximately
0.5 , side thrust F could be anything beween say 8 and 30% of tracking wevight, Part of this thrust varies inversely with centre, and more importantly it can flucuate violently with modulation character stic. It is unrealistic to expect to cancel out he ill-effects of fluctuating side thrust by fixed arm bias, although it may mitigat achieve, assuming drag D could be accu achieve, assuming drag D could be accu-
rately assessed, would be to reduce the maximum F by about $2 / 3$, at the cost of ncreasing the minimum F in roughly the As well as forc As well as force F increasing the stylus
loading on the inner groove wall and reucing the loading on the outer wall, ther is a separate force acting to displace th stylus from its free dead-centre position This is due to the tendency of the tangenine with the arm pivot, and might b termed the reverse toggle effect. The con ditions are set out in Fig. 3, which show hat by taking moments about the arm pivot, effective stylus displacement force
$=d \tan B$. Angle B will be nearly the same sthe tracking angle β, and d will be al most the same as D, so t is substantially the same as F, Fig. 3. It follows that any arm bias applied to compensate F will also me apply an outward acting arm bias of say $2 / 3$ of maximum F, then in lightly mod ulated grooves the displacement force t will be over-compensated, and there could be net force t of roughly 15% of the trackin clockwise direction. Conversely, in a peak modulated groove there will be a partially ompensated force t acting to rotate the cantilever in an anticlockwise direction The amount by which the cantilever/arma satic compliance of the cartridge, and any il-effects on sound quality will depend on he sensitivity of the transducer system to n-linearity due to dspla ue dead-centre position.
In addition to any audible effects, the istence of force F must result in added wear on stylus and disc. It may not be ealised that the effective increase in stylu loading against the inner groove wall is
double the net force F. If a given cartridge

WIRELESS WORLD OCTOBER 1981 requires wgm tracking weight with zero H, as could be the case with a true radial or
straight-line arm movement, then if F becomes say 0.2 gm the tracking weight will prevent mistracking on the groove outer wall, and the lateral loading on the inner wall will be increased by 0.4 gm .
The existence of so many factors in the lateral bias problem, and the difficulty of conflicting requirements, is doubtless the eason for the widely differing approaches adopted. The Hi -Fi press seem to regard an arm bias of about 10% of tracking dopt anything between 5 and 30%. And at least one major record company recommend setting arm bias on a plain ungrooved section of their test record! There are also differences of opinion on the quesion of whether bias should increase or
decrease over the arm travel. The press seem to regard increasing bias from rim to entre as desirable, whilst some manufacurers adopt reducing bias, presumably on he reasonable assumption that the tenreducing groove radius is more than balanced by the tendency for F / D to fall towards the inner grooves when overhang is small

Optimization

To date, the emphasis in the press seems To date, the emphasis in the press seems minimum possible angular errors, without regard to the possible penalty in increasing the lateral forces F and t
Distortion due to angular error is roportional to angular error per unit of mula attributed to Baerwald $d=4$ a forwhere d is \% tracking error distortion for modulation velocity $10 \mathrm{~cm} / \mathrm{s}, e$ is tracking error in degrees, and r is groove radius in with Fig. 2 for values of F / D and formuae 4 for optimum offset angle, one can plot F / D against distortion, as shown in Fig. 4. The whole controversy is summed up in this curve. It shows simply that the be achieved only at the cost of increasing the values of F and t; and conversely forces F and t can only be reduced by accepting increased angular errors. In the absence of effects of the opposing factors, the optimum balance is anybody's guess, but it is hard to see justification for the assumption hat the lowest possible angular error must distortion is said to be predominantly distortion is said to be predominantis of what level becomes audible. According to one source* 5 to 10% second harmonic distortion is normally underectable, so it 1% distortion would be audible bearing in mind the overtone content and highly complex waveform of musical modulation. Would the $11 / 2 \%$ imposed by the usual overhang of only 10 mm adopted "Piches the he bhif", by x W? (Pin

2% necessary to halve the force F at inne grooves? Without a definite answer, it is between the conflicting factors.
There are two essential factors to investigate, the audible effects of angular error and of lateral force, and it should be a the aid of a straight-line arm for a reference. The cartridge could be twisted round in say 1° steps up to a maximum of perhaps 7°, and side loading could be applied (perhaps by tilting the deck bodily) in
steps of say 5% of tracking weight up to steps of say 5% of tracking weight up to
perhaps 50% maximum. If such tests were assessed by listening panels, using a number of top-grade cartridges of differing characteristics, this would surely provide a firm basis for arriving at a generally acceptable balance. The listening tests
could be supplemented by wear tests on he stylus, and by measurements of stylus drag.
In th In thinking about these problems, it is necessary to keep a sense of proportion;
tracking error is only one source of distortracking error is only one source of distor-
tion and possibly a minor one. Probably the worst source is tracing error, which can easily run into double figures percentage at the inner grooves, particularly with tracking angle error, which is difficult to avoid. Another source is that due to any longitudinal compliance in the stylus/armature system; it is usual to mount the cantilever in an elastomeric grommet or
block, and this is not adapted to providing much, rigidity in the longitudinal direction. Bearing all these factors in mind, it seems not unlikely that the manufacturers are doing the right thing in using lower overhang and offset figures than those avoured so strongly by the hi-fi pundits. ion figures across the playing area of the record, for the extreme conditions favoured by one side or the other. Fig. 5
shows the distortion profiles at $10 \mathrm{~cm} / \mathrm{s}$ for hows the distortion profiles at $10 \mathrm{~cm} / \mathrm{s}$ for
as required to give lowest possible distortion, 10 mm as favoured by many manufacturers, and my proposal of 13 mm the low
distortion achieved by the 19 mm condition is only maintained if the inner groove radius does not fall below 60 mm , and in practice figures down to 58 or even 56 mm can occur with $33 \mathrm{rev} / \mathrm{min}$ discs, while 45 s can go down to about 50 mm . gives $21 / 2$ times greater distortion at the nominal 60 mm inner groove radius, in refurn for 35% reduction in lateral forces F and t. The proposed 13 mm condition
seems to make sense; it holds distortion down to a maximum of about 1%, and provides 25% reduction in lateral forces as

Continued on page 64

Appendix

The "two sides and included angle" trig. for
mula $a^{2}=b^{2}+c^{2}-2 b c c o s A$ applied to. Fig.
mul
mives
give
$\sin \beta=\frac{L^{2}}{+}+\frac{R^{2}-C^{2}}{2 L R}$
or $R=L \sin \beta \pm \sqrt{(L \sin \beta)^{2}+C^{2}-L^{2}}$
Bauer/Baerwald formula :

$$
h_{0}=\frac{r}{L\left[\frac{r}{R}+\left(\frac{R+r}{2 R}\right)^{2}\right]}
$$

where R and r are outer and inner groove radii.
Stevenson

$h_{0}=L-\sqrt{L^{2}-7600}$
 or $\sqrt{C^{2}+7600}-C$

Overhang for zero angular error at any two
where R and r ar

Offset angle:

$\frac{\beta_{i} R_{\min } \times \beta_{\min } R_{i}}{R_{\min } \times R_{i}}$
(4a)
where β_{i} is the angle at inner groove and $R_{\text {min }}$
the radius at which β example, this works out to $\beta_{\text {opt }}=26.1^{\circ}$, which fives errors of $+0.15,-0.16$ and $+0.09^{\circ}$ per ${ }_{\mathrm{cm}}^{\mathrm{cm}}$. . is
the nearest 0,10 best we can do when rounding to being at inner grooves and $R_{\text {min }}$ of 93 mm . With maller overhang figures, as often used by
manufacturers, the points of maximum error manuacturers, the points of maximum error
will usually be at outer grooves and $R_{\min }$, and
the new formula for $\beta_{\text {opt }}$ becomes
$\frac{\beta_{0} R_{\min } \times \beta_{\min } R_{0}}{R_{\min } \times R_{0}}$
where β_{0} is angle at radius R_{0} (normally
146 mm). If the overhang is small enough to place $R_{\text {m }}$ less than the inner groove radius, usually below 10 mm . then the for-
$\frac{\beta_{0} R_{i} \times \beta_{i n} R_{0}}{R_{0} \times R_{i}}$
(4c) mula for $\beta_{\text {op }}$ becols

Tracking mains filter

High-Q active network rejects low frequency interfering signals
by K. Radhakrishna Rao and R. S. Moni, Indian Institute of Technology, Madras

The circuit described is a high- Q, selftuned band-rejection filter fo
suppressing low-frequency suppressing low-frequency.
interfering signals, particularly 50 Hz power-line interference. It makes use of four op-amps and a phasecorrection scheme and needs no precision components. Because the
notch frequency of the filter tracks the frequency of the interference signal, tolerances and temperature coefficients of the frequency determining passive components do not affect the performance.

Active band-elimination filters have be come important in instrumentation used in biomedical and other fields, to eliminate low-frequency interference signals, partiquency and its harmonics. High-Q band stop filters are required, but without affecting the physiological data, which car ries a wide range of frequency components high-Q filter requires excellent perform ance characteristics. The zero-frequency of the filter has to be accurately determined by the passive components, and it must exactly coincide with the pole-frequency Such stringent requirements need preci-
sion passive components with zero temperature coefficients. But even if the filter satisfies all these conditions there is no guarantee of the frequency stability of the interfering signal. This frequency migh fluctuate from its nominal value and resul
in the feed-through of a significant portion of the interference signal at the output of the filter. This problem can be tackled only by using a self-tuned high-Q band elimination filter whose pole-frequency is zero frequency.

Many of the known active RC band-stop filters ${ }^{1-3}$ require precision passive compo nents with zero temperature-coefficients to achieve satisfactory performance. Further in a few self-tuned notch filters reported
earlier ${ }^{4,5}$ the notch response is obtained by earlier ${ }^{4,5}$ the notch response is obtained by subtracting from the input signal the in terference-frequency components, derived
from a switched RC network. The switching frequency is synchronised to the frequency of the actual interference signa through a clock generator, thereby providing a tracking capability. With this scheme the self-tuning range attained is limed tions with regard to passive components must be fulfilled. Moreover it is quite com plicated, because additional circuitry has to be incorporated to suppress the
switching-noise generated and to keep swoth inguts to the subtracting circuit equal in magnitude and phase at all the tracking frequencies. In this article a relatively simple scheme, which does not require passive components, is proposed. It uses the four-amplifier circuit shown in Fig. 1 , which is a modified Kerwin Huelsman Newcomb biquad ${ }^{6}$. Self-tuning in such an arrangement involves making the filter
voltage-tunable quency determining resistor, R in Fig. 1 , by a voltage-dependent resistor, R^{\prime}, shown in Fig. 2, and then locking it to the in terference signal $V_{\text {il }}$, by applying phase
corrections 8 as shown in corrections as show ircuit is
circuit is given in the

Experimental results
The filter shown in Figs. 1, 2 and 3 was matched j.f.e.t.s. The phase-correction

system was made up of a LM711C dual voltage-comparator, a CA3028A differen tial amplifier for temperature compensa tion of the output levels of the comparator, output. The control voltage from the phas correction scheme was used to the phase correction scheme was used to vary the
resistance offered by the fe.t. The filter was tested for self-tuning and frequency response characteristics. The input signallevels, V_{il}, and $V_{\mathrm{i} 2}$, shown in Fig. 1 were kept low enough (100 mV) to facilitat linear operation of the f.e.t.
Fig. 4 shows the filter attenuation for
different $Q_{0 s}\left(O_{0}=54.67,100\right)$ different Q_{0} ($Q_{0}=54.67,100$), as the fre-
quency of the interfering signal, $V_{\text {in }}$ (self tuning frequency) is varied. It can be seen that the attenuation decreases slightly as the frequency and Q_{0} are increased (see
equation (6) in Appendix). Fig 5 shows the frequency response characteristic with the filter self-tuned to the 50 Hz mains interference signal, $V_{i 1}$, and the incoming physiological data with interference signa present added as V_{i}.
the self-tuning range of the filter are found to be more than adequate in many applications, as, in practice, the drift in power line frequency is much less than the selftuning capability of the filter. The filter
can be used to suppress any undesired frequency component, in any range, by properly choosing capacitor C in Fig. 1
 Fig. 2. Voltage-dependent resistor using a
f.e.t, to be used for R in Fig. 1. It value $R^{\prime}=\left(2 R_{1}+R_{1}{ }^{2}, R_{f}\right)=$ effective resistance
between the terminals A and $B R_{f}=f_{e}$ between the terminals A and B. $\mathrm{R}_{f}=$ f.e.t.
resistance, determined by the control voltage, V_{C}. $R_{2}=$ resistors for equalising the
f.e.t. characteristics.

Fig. 1. Modified biquad circuit, providing
 $V_{i 1} V_{03}$ is the interference signal to be eliminated and $V_{i 2}$ is the physiological data signal containing the interference--
component. $\left(v_{0}(=1 / R C)=\right.$ ideal pole component. $\left(\right.$ w $\left._{0}=1 /=1 / R C\right)=$ ideal pole
frequency
of filter.) $Q_{0}=$ ideal pole Q; and $G=$ gain

within the limits permitted by the phase correction circuit. This scheme can be exended to suppress the harmonic component of the interference signal also, by adding one more filter of the same kind to be eliminated. A single phase correction scheme is sufficient to drive both the filters, using a "follow-the-master" prin-
ciple. In this case, the first filter will have ciple 9 . In this case, the first filter will have wo inputs, $V_{i 1}$ and $V_{i 2}$, as discussed ear-
lier and the second filter will have its input taken from the notch output, V_{04} of the first filter. The desired output, devoid of he interference signal and its harmonic component, is obtained from the notch output of the second filter
of jitter is observed at the notch output at 50 Hz . This is due to the presence of the 50 Hz ripple in V_{c}, used to control the f.e.t. To get rid of this, the phase correction scheme in Fig. 3 has to be slightly mod-
ified, by replacing the 711 dual comparator by another comparator circuit, shown in Fig. 6. It makes use of two single comparaors and an Exclusive-OR gate. The output of the gate has a frequency twice that of the by the succeeding filter stage in the phase correction scheme. However, the price to be paid is a slight decrease in the attenuation at 50 Hz , due to the increase in error introduced by the phase correction
scheme, if the comparators used are not perfectly matched. With this modification, using a pair of randomly chosen comparators, the attenuation at 50 Hz is found to be about 36.5 dB .

Appendix: circuit analysis

Considering the finite-gain of the op-amps used as $A=1\left(1 / A_{0}+\mathrm{s} / G B\right)$, where A_{0} is the finite d.c. gain and $G B$ is the finite gainbandwidth product of the op-amp, and the transfer-function of the notch filter with $G=1$ can be derived as:
$\frac{V_{04}}{V_{\text {i1 }}}=\frac{\left[\frac{s^{2}}{\omega_{z}{ }^{2}}+\frac{s}{\omega_{z} Q_{z}}+1\right]}{\left[\frac{s^{2}}{\omega_{p}^{2}}+\frac{s}{\omega_{p} Q_{p}}+1\right]}$
(1)

Fig. 4. Attenuation of the band-elimination

filter with self-tuning frequency.
$V_{\text {o4 }}=$ output of filter:
$V_{i 1}=$ interferen
$V_{04}=$ output of filter; $V_{i 1}=$ interference

Fig. 6. The comparator circuit with
Exclusive $O R$-ed output $Y=A \oplus B$

$\left.Q_{\mathrm{D}}=\frac{Q_{0}}{\left[1+Q_{0} \frac{\left(2-\frac{2}{Q_{0}}\right)}{A_{0}}-\frac{4 \omega_{0}}{G B}\right.}\right]$

Taking into account the tuning error, $\epsilon / 2 Q_{p}$, where ϵ is the error due to the phase-detector used in the phase-correcplified for the self-tuned filter as:

$$
=\left[\epsilon^{2}+Q_{0}^{2}\left(\frac{2}{A_{0}}-\frac{4 \omega_{0}}{G B}\right)^{2}\right]^{\prime}
$$

Reference 1. Wilson, G., A parallel-T based active notch
filter, Proc. $I E E E$, Vol. 65, Aprill 1977, pp. $580-$
2. Ananda Mohan, P.V.A., Bridged-T selects . Ananda Mohan, P.V.A., Bridged-T selects
filter notch frequency, and bandwidth, Electronics, Vol. 52, June 7, 1979, p. 128.
3. Tuladhar, K K, Tunable 3. Tuladhar, K. K., Tunable active-phase com-
pensated universal biquad, Electron pensated universal biquad, Electron. Letters,
Vol. 16, January 3, 1980, p. 44 . 4. Knott, , K. F. and Unsworth, L., Main-rejection tracking filter, Wireless World, Vol. 80, Sctober 1974 , pp. 3 . Yu.
Follow-up reiector filters for the power-line fre-
quency and is harmoriss quency and its harmonics, Instruments ande Expp.
Techniques, Vol. 21, July-August 1978, pp. 6. Tietze, U. and Shenk, Ch., Halbeiter 1974, pp. 350-2. 7. Hnatek, E. R., Application of linear integrated circuits, New York, J. Wiley and Sons,
1976, pp. 191-4. 1976, pp. 191-4.
8. Mossberg, K trimming of active-RC filters for phase measurements, Electron. Letters, Vol. 5, February
1969, pp. 520-1.
9. Radhakrishna Rao, K., Sethuran Neelakantan, P. K., A novel follow-the-master Nelarantan,
filter Proc. IEEE, vol. 65 , December 1977, pp.
172-26.

The cartridge

alignment problem

 Continued from page 61 against the 19 mm condition: and distortion drops away nicely in the $50-60 \mathrm{~mm}$ inner groove region. These profiles arebased on a figure for C of 200 mm , which seems typical. For other values, overhang should vary in inverse proportion, $h=$
${ }^{k / C}$ In the case of arms having L as the fixed dimension, this can be transposed a $h=1 / 2\left(L-\sqrt{\left.L^{2}-4 k\right)}\right.$. For the high-over hang condition as represented by suming an inner radius of 60 mm ; for the Randhawa proposal (54 mm) k is 3,300 ; for 10 mm overhang k is 2000; and for the 13 mm condition proposed it is 2600 . It remains to formulate a method of the radius at which offset angle is the same as tracking angle β. Calculate β for various values of C and h at the three controlling raddiii, i.e. inner grooves, outer grooves and $R_{\min }$ as $\sqrt{L^{2}-C^{2} \text {. Then calculate the }}$ Finally, calculate the radii for zero angle error, from formula 1. Plot these radi against h for various values of C, and against C for various values of h. The resulting curves are practically straight lines
over the usable range of C and h, which means that the setting radii have the form of a $y=a+b x$ relationship. The figures obtained are $R_{0}=79+(h C / 84)$ and $r_{0}=12+(h C / 71)$, where R_{0} and r_{0} are radii
for zero angle error. (Strictly speaking it is for zero angle error. (Strictly speaking, it is curacy, to use two empirical formulae when the product of the two quantities are precisely related (refer to formula 3), and it would be better to evaluate r_{0} from the formula $\left(L^{2}-C^{2} / R_{0}\right.$. For the proposed
ule $h=2600 / C, \quad R_{0}=110 \mathrm{~mm}$ and rule $=49 \mathrm{~mm}$, for any value of C within the
$r_{0}=49 \mathrm{~m}$ ormal range of say 170 to 230 mm . The maximum tracking error distortion can be calculated from the empirical expression $\alpha(\%)=210 / C$. Offset angle can be calcumated by the empirical expression 4380/C. Using high quality equipment I have been unable to detect any audible difference between the points of maximum tracking error distortion and zero error.
*"Pickups, the key to hi-fi", by J. Walton (Pitman).

Displacement current

articles on displacement curre articles on displacement current, please write to
Martin Eccles, Wireless World, Quadrant House, The Quadrant, Sutton, Surrey or ring
$01-3500$, extension 3589 .

IN OUR NEXT ISSUE

C.b. radio

frequency synthesizers
Direct and mixer-type frequency synthesizers are quency synthesizers are described by Dr E. F. da
Silva of the Open UniverSilva of the Open
sity. Points for and against each type are against each type are mentioned and there is a practical circuit design to cover the 40 cb chan nels.

Display aid

 for micro-processors
This is a device designed by Prof. K. Padmanabhan of Madras University which enables a simple oscilloscope to display the values of digitized signals in alphanumeric form, complete with soft ware-generated annota tion.

Cartridge alignment

 gaugeR. J. Gilson presents a simple device which plugs into the stylus posi ion of a pickup cartridge o enable the correct position to be set up protractor.
On Sale October 21

HATDSOK:

First there was the 130. A handheld D.M.M. which still sets the standards our competitors strive to match. Next came the 131. The introduction of the 135 saw $41 / 2$ digits on a handheld D.M.M. for the ver first time.
And that same commitment to innovation has resulted in the latest additions to the range. The Keithley
The result is an unrivalled selection of handheld measuring centigrade and fahrenheit readout. matched to a given need. With performance that looks pretty gevices. Each specification carefully Model 135

Odel 131 - 02% accuracy © Fuil overioad protection ACU bandwidth to 20 KHz
Model $130 \bigcirc 25$ ranges: 5 functions 10 amp span 0.5% accuracy
All models are guaranteed accurate for one year. And built to the high standards of quality expected of the Keithley name.
For more information simply fill in the coupon.
And learn about a range which will serve you . . . handsomely!

KEITHLEY

Keithley Instruments Ltc
1 Boulton Road Reading Berkshire RG2 ONL
elephone (0734) 86128
Also available from
I.T.T. Instrument Services, Tel. Harlow 29522
wW - 054 FOR FURTHER DETALIS

Accurate readings fasterwith AVo auto-ranging dmm's

AVO DA117 The AVO DA117 is an auto-ranging instrument that's really fast. On dc and resistance ranges, the response time is less than 1 second to an accuracy of $\pm 0,5 \%$ of reading ± 1 digit! This compact dmm features a $31 / 2$ digit lod with a range hold (or range up or down) facility. Measurements can be made up to $1000 \mathrm{~V}, 10 \mathrm{~A}$ and $20 \mathrm{M} \Omega$ and there is a special Junction Test range for diodes and transistors.
(1)

Member of the THORN EMI Group
ffers five functions with a basic 0,3\% accuracy all fully protected against overload. The response figures for the DA118 are as fast as its portable counterpart and the manually selected 20 mV range gives a resolution of $10 \mu \mathrm{~J}$

 From on-site Ser
laboratory bench Avo meet them all! applications contact any of our distribution outlets or call us direct for further
detailed information.

AVO LIMITED,
Archcilffe Road, Dover, Kent CT17 9EN. Archcilife Road, Dover, Kent
Tel: 0304 202620. Telex: 96283.

Long-distance television reception

2 - Why tv signals sometimes cover long distances

by Keith Hamer and Garry Smith

This month the authors discuss the theory behind various conditions under which the range of tv transmissions are extended and what is more important to the prospective DX-tv enthusiast - how
to look for, identify and make the best use of these conditions.
Temporary effects caused by certain weather conditions, meteor showers and
even lightning can affect the distance over even lightning can affect the distance over
which tv signals can be received. In this article we will take a closer look at some of the conditions briefly discussed in the last article and some others not previously mentioned. We hope that experienced
DX-tv enthusiasts will bear with us for the DX-tv enthusiasts will bear with us for the
benefit of newcomers to the hobby as we intend to cover news and development in the field in subsequent articles. For readers who missed the first article, DX-tv is an abbreviation for long-distance television

Tropospheric propagation This is probably the easiest propagation riment with as, provided one is not interested in receiving sound channels, a standard u.h.f. tv set can be used to pick up signals from the Continent if the aerial is pointed in the right direction
The troposphere extends from the surabove and within it atmospheric pressures vary in different areas. From time to time, slow-moving areas of above normal pressure can occur (anticyclones). Clear
blue skies by day and clear but cold nights are often associated with high-pressure areas, but sometimes a high-pressure area ogether with a low-pressure zone can exist that leads to conditions normally associated with winter
Assuming that the weather condition is ment in the strengths of usually weak sighals will be experienced. Long-distance signals will be at their best on the u.h.f. morning and late evening. If you pick up an unfamiliar programme during this atmospheric condition, the first sign that it may come from overseas is a picture without sound. Table 1 reveals that other sound channel spacings to the one we use,
system I.
A picture without sound does not

necessarily mean that the signal you are receiving comes from the Continent but by briefly tuning into the British transmitters you can usually make certish transmitters you can usually make certain by a process
of elimination. Many European stations of elimination. Many European stations
transmit the test card - the easiest means of identification - for a few minutes after close down, in the early morning and sometimes even all through the night.
A cold or occluded front the bo A cold or occluded front at the boundary of the high-pressure region can increase
the range of tv signals even further. In October of 1975, an exceptionally good

Fig. 1. In October of 1975 the weather
conditions shown here produced very good tropospheric reception conditions and signals from some 850 miles away
were received in the UK.
'opening' in the UK allowed signals transmitted some 850 miles away to be received. Figure 1, kindly supplied by the Meteorological Office, is a weather chart
for that period showing the high-pressure for that period showing the high-pressure ciated front, line AA.

Daily weather forecasts on BBC-1 are means of keeping watch for tropospheric
propagation conditions, as the Atlantic chart is always shown for a few moment and approaching high-pressure areas can be monitored. More detailed information scription for weather charts from the Meteorological Office in Bracknell.
During anticyclonic weather conditions, the earth warms up in the daytime reason the heat built up escapes quickly in the evening. Tropospheric propagation is often greatly enhanced by a frequent result of this heating and cooling process called sphere forms a waveguide for directing signals above around 70 MHz .
Reception under tropospheric-propagation mode conditions tends to be best in a path parallel to the isobars (lines showing where atmospheric pressures between low and high-pressure areas are equal) on
weather charts. As a high-pressure area moves away from you reception will be best from transmitters in line with the trailing edge of the area by means of tropospheric ducting.

Yet another indication that Continental reception via the troposphere may be enConditions again tend to be best in the early morning and late evening, but fall off as the sun warms the lower troposphere. long-distance signals can sometimes be re-long-distance signals can sometimes be re-
ceived for several days. Tropospheric propagation has the advantage that signals received by it are not subject to rapid fad ing and that little phase-distortion takes 'entertainment quality'. The disadvantas is that irregularities in terrain tend to obstruct the signal path: enthusiasts on the east coast of Britain have a better chance of
receiving signals from Europe than those receiving signals from Europe than tho
living on the west side. ing on the west side.
Bands III to V are
advantageous tropospheric conditions bu even Band I can be affected. Programme most received will come from France, Bel-

(a)
(a) Radiodiffusion-Télévision Belge's (Belgium's French-l-language service) PM5544 electronic test-pattern received in
the UK by tropospheric propagation.
(b) Ionized F2 layer conditions caused eception of this picture in the UK from the
USSR's TSS service close to the Chinese border on channel R1 (49.75MHz vision). The image shown features distorsion ypical of pictures received by F propagation.
(c) The origin of the image shown above, the TSS "0249" test-card.
(d) A PM5544 test pattern on channel E3 (55. 25 MHz vision) received by F2
propagation. This picture is thought to
gium, East and West Germany, Luxem bourg and the Netherlands but it should noted that good tropospheric opening are relatively few and far between compared with the frequency of other forms of propagation.

Meteor shower

Long-distance signals can be received or short periods when meteor showers
cause ionization of the atmosphere's E ayer. These meteors, which may be very mall indeed, move through the E layer at high velocities and friction causes ionized
trails to be left behind. Meteor-shower (or meteor-scatter) propagation, often abbreviated to ms, can occur at any time of the day or night.
Although
occurrence of meteor

(b)
have come from an Arab Emirate country some 4,500 miles away. (e) A Voice of Kenya (VOK) news caption received via trans-qquatorial skip in September '80. (g) Ghosting associated with sporadic E reception is shown in this photo of an
image from Sveriges-Radio (SR-Sweden) image from Sveriges-Radio (SR-Sweden)
Signals received during sporadic E can, ignals received during sporadic E can,
owever, be very clear and last for several hours.
(h) A further example of reception possible through sporadic Eshowing TVE (Televi-
sion Española) on channel E2 (48.25MHz vision).
showers in any 24 -hour period is random there are certain times of the year when meteor showers appear more frequently. Details of these annual periods can be Table 2 gives a rough guide of the best imes of the year to look for long-distance ignals as far as meteor-shower propagasignals as far as
tion is concerned.
It is not possible to predict the direction from which signals enhanced during meteor showers might come from and, as he effects of a shower usually last for only
few seconds, identification of the a few seconds, identification of the
transmitter is difficult. Band I signals are most likely to be improved under this mode of propagation but sometimes inense ionization in the E layer can improve reception on Band III channels.

Table 1: World television transmission standards
System No. of Channel Vision Sound/vision Vision Sound Regions

		(MHz)	(MHz)	(MHz)			
A	405	5	3	-3.5	+	a.m.	UK, Eire (v.h.f., to be phased out within the decade)
B	625	7	5	+5.5		f.m.	Western Europe, Albania, parts of Africa, Middle East, Australasia (v.h.f.)
C	625	7	5	+5.5	+	a.m.	Luxembourg (v.h.f.)
D	625	8	6	+6.5	-	f.m.	Eastern Europe, Albania, USSR, China (v.h.f.)
E	819	14	10	± 11.15	+	a.m.	France (v.h.f., possibly changing to system L on v.h.f.), Monaco (v.h.f., 625-line scanning)
G/H	625	8	5	+5.5		f.m.	Western Europe (u.h.f., system G), Belgium, Cyprus, Greece, Israel, Malta, Yugoslavia (u.h.f., system H with 1.25 MHz vestigal side-band), Monaco (u.h.f., system G)
1	625	8	5.5	+6	-	f.m.	UK (u.h.f.), Eire (v.h.f./u.h.f.), Rep. of S. Africa (v.h.f./u.h.f.), some Central African countries (v.h.f.//u.h.f.), Hong Kong (u.h.f.)
K	625	8	6	+6.5	-	m	Gabon (v.h.f.), Eastern Europe (u.h.f.), French Territories (system K)
$\stackrel{L}{\text { L }}$	${ }_{6} 625$	8	6	+6.5	\pm	a.m.	France, Luxembourg, Monaco (u.h.f.)
M	525	6	4.2	+4.5			N. and S. America Forces (AFRTS), Japan
N	625	6	4.2	+4.5	-	f.m.	Argentina, Bolivia, Paraguay, Uraguay

WIRELESS WORLD OCTOBER 1981

(c)

(f)

Lightning flash
During severe thunderstorms lightning causes the atmosphere to become highly charged, thus causing incident-signal re-
flection. With this form of propagation, both v.h.f. and u.h.f. transmissions may be enhanced. For optimum results the lightning should occur mid-way between
the transmitter and receiving site. Conditions may initially be monitored by listening to the radio, since lightning causes interference, especially in the long-wave band.

Auroral reflection
From time to time, particularly around the equinoxes, there are periods of intense so-
lar activity. Solar flares erupt and cause vertical r.f. reflecting sheets within the earth's atmosphere due to magnetic disturbance and ionization of the D, E and F
layers. Visual evidence of such dislayers. Visual evidence of such dis-
turbances is the Aurora Borealis or "Northern Lights" ("Southern Lights" in the southern hemisphere). In the northern hemisphere, the charged particles emitted by the solar flares spiral towards the earth and are concentrated at the auroral zone. a northerly direction irrespective of the location of the transmitter. It follows that aerials should be directed northwards. A rumbling or 'sleigh-bell' effect on
sound and horizontal bars on vision are associated with signals propagated by auroral reflections. It is possible to receive rans-Atlantic transmissions during excepionally high solar-flare activity. Signals eceived tend to be of poor quality but
nevertheless auroral reflection (ar) is an interesting form of propagation. Due to the rotation of the sun, there is a tendency

(d)

(g)

Table 2: Approximate annual meteor-shower periods. Between the dates given here long-distance reception aided by meteor-shower ionization in the
atmosphere is most likely.
aypion

Meteor shower	Beginning	End	Chances of long distance receptio
Quadrantids	Jan. 3	Jan. 4	average
Lyrids	Apr. 19	Apr. 22	moderate
Aquarids	May 1	May 13	good
Perseids	July 27	Aug. 17	best
Orionids	Oct. 15	Oct. 25	moderate
Taurids	Oct. 26	Nov. 16	average
Leonids	Nov. 15	Nov. 17	unpredictable
Geminids	Dec. 9	Dec. 13	good

for recurrence of auroral reflection after approximately 27 days. Normally only reception is concerned but Band III channels may well suffer from severe noisedistortion of the type mentioned above. Usually auroral reflection manifests itself in the evening

F2 propagation
During intense solar activity, the F2 layer becomes ionized and reception from tv ransmitters over 2000 miles away is pos-
sible. The F layer divides into two belts in the daytime; the F2 layer forms the outer belt at about 200 miles above the earth's surface. During recent solar activity Australian television signals have
ceived several times in the UK.
F2 layer reception occurs when solar activity is at a maximum in cycles of approximately eleven years. An observation of the sun's surface will indicate whether
F2 (and also auroral reflection) reception is F2 (and also auroral reflection) reception is
likely as magnetic storms in the sun's photosphere, visible as sun spots, are responsi-
ble for the ionization in our atmosphere that causes radio waves to be reflected. To
avoid damage to the eyes look at the sun avoid damage to the eyes look at the sun
through a piece of smoked or filter glass, or project its image onto a piece of white card: never use a telescope or binocular ${ }_{i}$ Theoretically, F2 reception is best when it is noon at a point mid-way between the duting the present sun-spot-cycle peak, signals from the Far East are noted soon after sunrise. Reception from Australian stations on channel 0 (vision frequency 46.25 MHz) has also been reported at
around this time. Signals from central around this time. Signals from central
Russia will be received towards midmorning. During December 1979, transAtlantic signals were received on many days from shortly after mid-day until late afternoon. African signals, thought to have
originated from central countries and Zimbabwe, have also been received, mainly during the equinoxes and after mid-day. Reception from the south was noticeably
weaker than that from east and west An weaker than that from east and west. An
interesting point which several enthusiasts have noted about F2 reception, especially

(e)
(h)

)
in the early morning, is that signals tend to increase from zero to maximum
within the space of a few minutes.

Trans-equatorial skip
As sunset approaches, the F1 and F2 As sunset approaches, the F1 and F2
layers break up and merge to form a single layer at an altitude of approximately 250 miles. As the F2 layer disintegrates another effect can occur known as transequatorial skip (normally abbreviated to
te). Reception usually occurs within a limit of 40° north or south of the equator. Signal quality is similar to that experienced with F2 layer propagation, that is, distorted with multiple images. II is often difficult to decipher signals received by these two
modes but where there is a possibility of 'double-hop' paths, reception of transmitters at vast distances can be achieved. Normally, only Band I is affected.

Sporadic E

Every year between May and September in the Northern Hemisphere), many part-
time DX-tv enthusiasts come out of winter hibernation for the "sporadic E" season (sporadic \mathbf{E} is abbreviated to sp.E). As many readers will know, short-wave radio tion in the various layers, including the E layer. This particular layer lies approximately 75 miles above the earth's surface and, although it is capable of reflecting short-wave signals, television signals nor-
mally pass straight through it. However, during the summer months the E layer becomes highly ionized. If the electron density is sufficiently high, Bands I and II ignals wil be reflected.
Patches of ionized gases within the E layer move about at great speeds,
sometimes approaching 300 mile/h. Several transmissions can be received simultaneously on the same channel, the stronger and more stable signal being accompanied by one or more 'floaters'. But
signal bandwidth can be severely restricted signal bandwidth can be severely restricted
and sometimes strong video will be present without sound and chroma signals. We have noticed a tendency for the lower Band I channels to suffer more from this peculiarity the
60 MHz .
As the name suggests, sp.E reception is
very sporadic and can occur at any time of the year either day or night, although con ditions are less favourable outside the main season. Sp.E cannot be relied upon for
entertainment-quality signals and the countries likely to be received cannot be predicted. Reception via sp.E in Band II tends to be more stable and resembles that enhanced by tropospheric propagation. Signals are normally received within 1,000
miles of the transmitter although doublehop or even multi-hop sp.E is possible. At times during the sp.E season, signals from Zimbabwe (ZTV) have been received, usually in the later afternoon. These were combination of trans-equatorial skip and sporadic E as Italian television transmissions were normally present simul-
taneously.

Depending on the state of the E layer, reception can last from a few minutes to mitters can be received via sp.E and it is possible to receive virtually every national television service operating in Europe. Some Middle East countries can also be
received within the UK, notably Jordon (JTV). A survey conducted by us (published in the EBU Technical Review, October 1979) revealed that the USSR television service, TSS, was the most commonly received station for this location. Signals
from the USSR could easily be received with good picture quality using nothing more than a length of standard wire for an aerial. So for sp.E signals, the minimum of extra equipment will suffice. For serious DX work, however, an external aerial mast is recommended with facilities for rotating the aerial(s). transmissions on Band III may also be
received so when reception on Bands I and II is good, make a check on the lowerfrequency channels of Band III. For newcomers to DX-tv who are mystified by
references to Bands and channels, all will references to Bands and channels, all will
be revealed in the next article when we will be covering channel allocations.

Acknowledgements The authors would like to thank Mr Fish of the Met. Office for supplying the
weather chart and Mr Sturgess for the weather chart and Mr Sturgess for the
meteor shower periods shown in Table 2 .

A slightly more detailed version of Table 1 will be published in the 1982 WW diary with
up-dates provided by the European Broadcasting Union.

Another engineer persecuted in USSR

Following our report on the detention of two electronics workers in the USSR
(News, July issue) we have been told of a (News, July issue) we have been told of a
further case by Dr Yosef Ahs, a hospital anaesthetist who was born in the USSR but now lives in Israel. This is Boris Chernobilsky, aged 37, a Jewish radio and
electronics engineer from Moscow. He used to work in a high-security institute, possibly on radar. Like Fridman and Braipovsky (July issue) he applied for a visa to emigrate to Israel but was refused on the grounds of "secrecy". That was in 1975.
Since then Chernobilsky, his wife Elena (also a radio engineer) and their two daughters have been constantly harassed by the KGB. In October 1976 he went with a number of other Refuseniks to the
offices of the Praesidium of the Suprem offices of the Praesidium of the Supreme
Soviet where they hoped to find out why they were being refused visas and for how

long they would be refused. Instead of long they would be refused. Instead of
being received, the men were rounded up and taken to a site outside Moscow where they were beaten. Two of them, Dr Ahs and Chernobilsky, were detained while the others were set free. They were held in prison for 22 days for "malicious hooliga-
nism". Dr Ahs was allowed to leave for nism . Dr Ahs was allowed to leave for
Israel in 1978. Chernobilsky has not been able to work in his profession, in spite of efforts to obtain employment in the gen eral field of radio, and so has been working
as a plumber in order to as a plumber in order to support his
family. The Chernobilskys' flat has been family. The Chernobilskys flat has been
searched and they were threatened with arrest more than once.
arrest more than once.
On 10th May 1981 a number of Jews set out to an area near Moscow called Opa-
likha to have a picnic to celebrate Israel's likha to have a picnic to celebrate Israel's
Independence Day. Towards the end of the picnic, militiamen who had been standing nearby told the Jews to move There was an acrimonious argument involving Chernobilsky. Everyone wen
home without incident, but several days later Chernobilsky received in the post a summons to report to the police station. As there was no mention of why he was being summoned, he did not report. In early
June he disappeared for two days - he June he disappeared for two days - he
had been picked up by the police and held overnight. At the end of the first week in June he returned home after having signed an undertaking that he would not leave Moscow.
A criminal file against Chernobilsky has been compiled under which he is alleged to have violated Article 191-1, "resisting the
police". The indictment claims that he was asked to give his name and produce his internal passport in Opalikha but refused to do so. The file was due to be completed
by the end of June 1981 and then Chernoby the end of June 1981 and then ChernoBoris Chernobilsky

Royal Wedding - a sound spectacular

BBC sound broadcasting and recording at St. Paul's. by John Flewitt B.Eng., MIEE, BBC Engineering Information Department

An estimated 1000 million people
were provided with sound from Paul's Cathedral during the Royal Wedding. BBC engineers had not only to arrange a variety of mono and stereo sound feeds for broadcasting on radio and television, but also to
cope with both stereo and surroundsound for BBC recordings. This article explains how it was done.
Engineers from BBC Radio Outside Broadcasts rigged 57 microphones to bring the sound of the wedding service to the ILR and viewers of ITV. The sound was fed to the BBC sound control room in St. Paul's Crypt, where a 64 -channel mixer produced a 'clean' feed of stereo sound a second 'mixed feed' mixer added the commentaries to produce feed for BBC Radio 4. BBC Television carried out their own sound mixing and other broadcasting organizations either took direct micromixers. The needs for producing various sound recordings had aldo to be considered: BBC
Enterprises needed a clean feed of sound for their commercial disc and cassette redigital recordings were made, one of clean feed sound and the other including the BBC Radio commentary. And, as a com petely separate exercise, a surround ound recording was made.
All in all, the whole operation had the largest number of stereo o.b. routeings for ven radio commentary positions along the processional route, roving radio links on he day provided interviews with the pub
ic and sounds of street celebrations create a wide spectrum of sound for BBC Radio.

Microphone installation

Detailed engineering planning began as Much of the microphone placing in cathedral was based on past experience but, on this occasion, the use of the Bach Choir and the large orchestra positioned in the north transept was something mor Planning the sound in the cathedral was the responsibility of the BBC's Senior
Sound Supervisor, Harold Kutscherauer.

He arranged coverage around twenty stereo capacitor microphones (mostly coincident pairs), eleven of which were mounted on slings and others suspended on
strengthened cables from the 70 ft triforium gallery of the cathedral. The main internal 'sound stages' to be covered were the dais and the altar for the marriage ceremony itself, the Cathedral Choir and Kneller Hall trumpeters in the chancel,
the State Trumpeters in the Whispering the State Trumpeters in the Whispering
Gallery and by the west door, the orchestra and Bach Choir in the north transept, the organ speaking in the north-east quarterdome and above the west door, and the suspended from the west portico to carch the west door trumpeters immediately be low, sounding their fanfare on the arrival

A - Portico microphone; coincident pair Coincident pair mounted in chancel for cathedral choir. C - Interior of BBC's monitoring equipment is on the left and beyond are the two video recorders 16-bit p.c. to record digital sound by the underneath. D - Main and spare stereo mics for the ochestra are eft and top right suspended in north transept; below on right is a sound field
microphone. E-One of the microphone positions in the cathedral: at the top a

Wireless world october 198
of Lady Diana. The remaining comple ment consisted of spot microphones fo choir, and lectern positions for the ceremonial.
When it comes to siting microphones in . Paul's, the problems are more physica natured acoustics and the use of 'close-mic' techniques ensure that sound levels rarel rise high enough to excite any troublesome echoes. The three requirements borne in mind
primarily, to provide complete cove rage, bearing in mind the sound radio presentation. Radio listeners, lacking any visual component, easily become confuse when any of the action inadverten to make the microphones unobtrusive a television audience without sacrificing sound quality. An example of this was th siting of the Cathedral Choir microphone on either side of the chancel instead of (the black finish of some of the micro phones helped make them less conspicuous);
to provide tighter control of balance by television spound mixers the useful of favouring the sounds of small groups of orchestral performers, for instance, when they were being shown in close-up by the cameras.
all microphones were capacito Vpes, used in cardioid configuration, and most routed signals down to the cryp
 an extra precaution against a muttipa failure

Control and mixing
In the control room, each microphone's signal was fed firstly to a splitter, one out put of which was taken to the clean-feed 64 -channel mixer, a second to a 'ceremo nial' bay^ and, in the case of speech
microphones, a further feed was taken to the cathedral's public address system. The outputs of the 'ceremonial' bays provided both direct microphone signals, for BBC Television and Thames Television, for example, and a mixed feed to BBC Broad other purposes.
For large ceremonies, it is norma practice in BBC Radio for two mixers to be installed where possible. The mixers are used in adjacent but acoustically isolated crypt. This isolation enabled the mixer a the 'clean feed' desk to concentrate more fully on balancing the ceremonial. The 'clean feed' desk output was then fed to the mixed feed position where the operator using cues from talkback.

* CCremonial' bay is BBC parlance for a type of
microphone distribution amplifier used chiefly on cere. microphone distribution amplifier used chiefly on cere-
monial occassions - hence its sme.. Each bay will
handle nine microphone inputs and each input has wo handle nine microph
buffered outputs.

Recording the wedding This sonically grand occasion also gave the recording, over and above the standard recording, over and above the standard
In the first instance, two experimenta digital recordings were made, one of clean feed sound carried out in the BBC's digita Checording van parked in the Cathedral sound, undertaken at Broadcasting House The digital van was equipped with twin video recorders with a 16 -bit pulse-code modulation unit plus the normal sound onitoring and mixing faciities. Prevers oticeable in digital recording, are now argely overcome by ensuring a dust-free recording area and using only highest uality, pen-tested recording tape
Finally, the surround-sound recording as a technical experiment to aid Britis dustry. Four sound-field microphones of an improved design were specially loaned for the event, three being used internall ransept and the nave towards the west door. The fourth was mounted near the cathedral steps in the north-west Lantern. The four component outputs from each dividual tracks of a 24 -track without any form of surround-sound coding. Special noise-reduction devices were ruled out by interference from nearby thy ristor lighting dimmers and, instead, a mprove signal/noise ratio. A problem then arose with sound linking on tape change vers, since at this high speed each reel of tape ran for only 30 minutes. This wa vercome by arranging changeovers to occur during pauses in the wedding servic further arranging for a standby two-channel recorder to make a linking recording in HJ -coded stereo. These stereo recordings would then suffice in any subsequent the multichannel surround-sound recording.
Setting the sound-field microphones was relatively simple: each unit's four encapsumicrophone processor, gave the with unique versatility enabling an extremely

John Flewitt joined the BBC in 1967 ther obtaining a degree in electronics intially in television studio wainkenance before joining Studio Capital Proects Department. He is now a publicty engineer in Engineering
nformation Department with special responsibility for technical photography
wide range of operating modes to be ering seals sen. In in a subsequent re-ound-field microphone's physical heagh was set by listening to the output of a unit in omnidirectional mode and fixing the height when the most satisfactory balance was heard. A height in the range $30-50 \mathrm{ft}$

Royal success

was a complex exercise and, with 1000 illion people listening for the marriag perform?
Well, very successfully - it could hardly have been otherwise; but, bearin mind that much of the ceremony coul of be properly rehearsed, the quiet srom the engineers at the successful conclusion can be well unerstood.
The introduction of television and it accompanying lighting into a large, comainly presented numerous hum problems or instance. But after the below-par cable creening was tracked down and som able re-routeing undertaken, the seve ong lighting net uccessfully, each in its own way making ital contribution to Britain's and the world's biggest outside broadcast

Acknowledgement

he author would like to thank the eng ers of Radio O.Bs for their assistance especially Harold Kutscherauer for his dia Bram of the microphone placings, and the sion to publish.
"Mixed-feed" mixer in BBC
control room in cathedral crypt. "Clean-feed" "input was faded on the
operator's left; operator's
commentator left; commentator's microphones we
controlled on controlle on
mixer's right.

Digital storage and analysis of speech

3-Spectral analysis
by lan H. Witten, M.A., M.SC., Ph.D., M.I.E.E., University of Calgary

WIRELESS WORLD OCTOBER 198
bands. The filter characteristics do no need to have very sharp edges, because the highly correlated. Indeed, there is a disad vantage in making them too sharp, becaus the phase delays associated with sharp cutoff filters induce "smearing" of the spectrum in the time domain. This partiButterworth bandpass filters.

For regenerating speech stored in this way, an excitation of unit impulses at the or white noise (for unvoiced sounds) produced and passed through a bank of bandpass filters similar to the analysis ones. The excitation has a flat spectrum,
for regular impulses have harmonics at multiples of the repetition frequency which are all of the same size, and so the spectrum of the output signal is completely determined by the filter bank. The gain o each filter is controlled by the stored mag-
nitude of the spectrum at that frequency
The frequency spectrum and voicing pitch are due to movements of the articulator organs (tongue, lips, etc.) in the speake and so are limited in their speed by physical constraints. A typical rate of produc
tion of phonemes is 15 per second, but in fact the spectrum can change quite a lo within a single phoneme (especially a stop sound). Between 10 and $25 \mathrm{msec}(100 \mathrm{~Hz}$ and 40 Hz) is generally thought to be a satisfactory interval for transmitting or
storing the spectrum, to preserve reasonably faithful representation of the speech. Of course, the entire spectrum, as well as the source characteristics, must be stored at this rate. One channel vocode uses 48 bits to encode the information rate of $2400 \mathrm{bits} / \mathrm{s}$ - very considerably les than any of the time-domain encoding techniques
It needs some care to encode the output of 19 filters, the excitation type, and th pitch into 48 bits of information. Six bits are needed for pitch, logarithmically en This leaves 41 bits to encode the output of the 19 filters, and a differential technique can be used which transmits just the difference between adjacent channels - fothe spectrum does not change abruptly in
the frequency domain. Three bits are enough for the absolute level in channel 1 , and two bits for each channel-to-channel difference, giving a total of 39 bits for the whole spectrum. The remaining two bits per frame can be reserved for signalling or monitoring purposes.
A $2400 \mathrm{bit} / \mathrm{s}$ channel vocoder degrades perceptibly. It is sufficient for innel quite communication, where if you do not understand something you can always ask for it to be repeated. It is probably not good nough for most voice response applicabe used with larger filter banks and much higher bit rates, and still reduce the data
rate substantially below that required by og. p.c.m
Pre-emphasis
It has often been noticed that there is an overall $-6 \mathrm{~dB} /$ octave trend in speech creases. For vocoders, and indeed for other methods of spectral analysis of peech, it is usually desirable to equalize his by a $+6 \mathrm{~dB} /$ octave lift prior to proupy a similar range of levels. On regen ration, the output speech is passed through n inverse filter which provides $6 \mathrm{~dB} / \mathrm{o}$ ave of attenuation.
For a digital system, such pre-emphasis an either be implemented as an analogue ircuit which precedes the presampling filter and digitizer, or as a digital operation the former case, the characteristic is sually flat up to a certain breakpoint, which occurs somewhere between 100 Hz and 1 kHz - the exact position does no seem to be critical - at which point the hasis on output ought to have an exactly inverse characteristic, it is sometimes modifed or even eliminated altogether in an tumpt approximately to counteract the $\sin \left(\pi f / f_{s}\right) /\left(\pi f / f_{s}\right)$ distortion introduced by the desampling operation, which was
discussed in an earlier section. Above half the sampling frequency, the characteristic of the pre-emphasis is irrelevant becaus ny effect will be is resampling filter.
The effect of a 6 dB /octave lift can also input. The operation
$y(n)=x(n)-a x(n-1)$
iutable, where the constant parameter is usually chosen between 0.9 and 1. Th erencing, and this straightforward d.p.c.m. signal as input to the spectra analysis. Figure 12 plots the frequency

Fig. 12. Frequency response of digital pre emphasis block shown in Fig.
and digital responses shown.
response of this operation, with a sample frequency of 8 kHz , for two values of the parameter, together with that of a $6 \mathrm{~dB} /$ oc
tave lift above 100 Hz . The vertical positions of the plots have been adjusted to give the same gain, 20 dB , at 1 kHz . The difference at 3.4 kHz , the upper end of th telephone spectrum, is just over 2 dB . A
frequencies below the breakpoint frequencies below the breakpoint, in this
case 100 Hz , the difference between analogue and digital pre-emphasis can be very
great. For $\mathrm{a}=0.9$ the attenuation at zero requency is 18 dB below that at 1 kHz , which happens to be close to that of the analogue filter for frequencies below the
breakpoint. However, if the break point had been at 1 kHz there would have been 20 dB difference between the analogue and $a=0.9$ plots at z.f. And of course, the $a=1$ characteristic has infinite attentuation at the pre-emphasis does not seem to be at all ritical.
The above remarks apply to voiced speech. For unvoiced speech there appears to be no real need for pre-emphasis, deed, it may do harm large high-frequency components. here is a case for altering the parameter a according to the excitation mode of the speech: $a=1$ for voiced excitation and $a=0$ for unvoiced gives pre-emphasis just when pressing the parameter in terms of the autocorrelation of the incoming signal, as

$$
a=\frac{R(1)}{R(0)},
$$

where $R(1)$ is the correlation of the signa with itself delayed by one sample, and $R(0)$ is the correlation without delay-(that ntuitively because high sample-to-samp correlation is to be expected in voice seech, so that $R(1)$ is very nearly as grea 0 and the ratio becomes 1 ; til or no sample-to-sample correlatio he re present in unvoiced speech, makio iscent of a.d.p.c.m. with adaptive predic tion. However, this sophisticated pre-em hasis method does not seem to reakpoint in an analogue pre-emphas filer is chosen to be rather greater tha ve energy. In fact, one channel vocode has the breakpoint at 1 kHz , limiting th sain to 12 dB at 4 kHz , two octaves above.
Digital signal analysis
You may be wondering how the frequency response for the digital pre-emphasi
filters, displayed in Fig. 12, can be calculated. Suppose a digitized sinusoid is applied as input to the filer.

$$
y(n)=x(n)-a x(n-1) .
$$

A sine wave of frequency f has equation $x(t)=\sin 2 \pi f t$, and when sampled at $t=0, T$ 27, . . . (where T is the sampling interval, 125 ms for an 8 kHz sample rate), this be venient to consider a complex more coninput, $e^{j 2.7 f h T}$ - the response to a sinusoid then be derived by taking imaginary parts, if necessary. The output for this
input is input is

$$
y(n)=e^{i 2 T f f i T}-a e^{i 2 \pi} f\left(n^{-1) T}\right.
$$

$$
=\left(1-a e^{i 2 \pi f T} e^{\mathrm{i} 2 \pi f n T},\right.
$$

a sinusoid at the same frequency as the input. The factor $1-a e^{-\mathrm{i} 2 \pi T T}$ is complex nents. Thus the output will be compo
shifted and amplified version of the input． The amplitude response at frequency f is therefore
$\left|1-a e^{-\mathrm{j} 2 \pi T T}\right|=\left[1+a^{2}-2 a \cos 2 \pi f T\right]^{1 / 2}$, or
$10 \log _{10}\left(1+a^{2}-2 a \cos 2 \pi f T\right) \mathrm{dB}$ ． Normalizing to 20 dB at 1 kHz ，and assum－ ing 8 kHz sampling，yields

$$
\begin{aligned}
& 20+10 \log _{10}\left(1+a^{2}-2 a \cos \frac{\pi f}{4000}\right) \\
& -10 \log _{10}\left(1+a^{2}-2 a-2 a \cos \frac{\pi}{4}\right)
\end{aligned}
$$

With $a=0.9$ and 1 this gives the graphs of Fig． 12. Frequency responses for analogue filters
are often plotted with a logarithmic fre quency scale，as well as a logarithmic am－ plitude one，to bring out the asymptotes in $\mathrm{dB} / \mathrm{coctave}^{\text {as straight lines．For digital filt－}}$ ers，the response is usually drawn on a
linear frequency axis extending to half the sampling frequency．The response is symmetric about this point．
Analyses like the above are usually ex－ pressed in terms of the z－transform．De－ note the unit delay operation by z ．The of course an arbitrary matter，but the convention has stuck．Then the filter can be characterized by Fig．，13，which signi－

Fig．13．Digital pre－emphasis filter．Block labelled Z^{\prime} is delay operator．
fies that the output is the input minus a delayed and scaled version of itself．The transfer function of the filter is

$$
H(z)=1-a z^{-1},
$$

and we have seen that the effect of the system on a（complex）exponential of fre quency f is to multiply it by

$$
1-a e^{-i 2 \pi / f T}
$$

To get the frequency response from the transfer function，replace z^{-1} by $e^{-i 2.2 / f T}$ Amplitude and phase responses can then of the complex frequency response．

If z^{-1} is treated as an operator，it is quit in order to summarize the action of the filter by
$y(n)=x(n)-a z^{-1} x(n)=\left(1^{1}-a z^{-1}\right) x(n)$.
However，it is usual to derive from the sequence $x(m)$ a transform $X(z)$ upon which
z^{-1} acts as a multiplier．If the transform of $x(n)$ is defined as

$$
X(z)={ }_{n=-\infty}^{\infty} x(n) z^{-n}
$$

then on multiplication by z^{1} we get a new transform，say $V(z)$ ：

$V(z)=z^{-1} X(z)=z^{-1} \sum_{\sum=\infty}^{\infty} x(n) z^{-n}$

$=\Sigma x(n) z^{-n-1}=\Sigma x(n-1) z^{-n}$.
$V(z)$ can also be expressed as the transform of a new sequence，say $v(n)$ ，by
$V(z)={ }_{n=-\infty}^{\sum_{-\infty}^{\infty} v(n) z^{-n},}$
from which it becomes apparent that

$$
v(n)=x(n-1) .
$$

Thus $v(n)$ is a delayed version of $x(n)$ ，and we have accomplished what we set out to do，namely to show that the delay operato
z^{-1} can be treated as an ordinary multiplier in the z－transform domain，where z transforms are defined as the infinite sums given above．f z for fiter In terms of z transfors，the filter can be written

$$
Y(z)=\left(1-a z^{-1}\right) X(z),
$$

where z^{-1} is now treated as a multiplier

$$
H(z)=\frac{Y(z)}{X(z)}=1-a z^{-1},
$$

the ratio of the output to the input transform．
It may seem that little has been gained by inventing this rather abstract notion of transform，simply to change an operator to ailter is no simpler in the transform domain than it was in the time domain using z^{-1} a an operator．However，we will need to go on to examine more complex filters．Con sider，for example，the transfer function

$$
H(z)=\frac{1+a z^{-1}+b z^{-2}}{1+c z^{-1}+d z^{-2}} .
$$

If z^{-1} is treated as an operator，it is not If z^{-1} is treated as an operator，it is no
immediately obvious how this transfer function can be realized by a time－domain recurrence relation，However，with z^{-1} a an ordinary multiplier in the transform domain，we can make purely mechanical
manipulations with infinite sums to see what the tranfer function means as a recur－ rence relation．
It is worth noting the similarity between the z－transform in the discrete domain and the Fourier and Laplace transforms in th
continuous domains．In fact，the transform plays an analogous role in digita signal processing to the Laplace transform in continuous theory，for the delay operator z^{-1} performs a similar service to
the differentiation operator s ．Recall first the continuous Fourier transform，

$$
G(f)=\int_{-\infty}^{\infty} g(t) e^{-i 2 \pi / / d} \mathrm{~d} t ;
$$

where f is real，and the Laplace transform，

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t,
$$

where s is complex．The main difference between these two transforms is that the Fourier transform and at 0 for the Laplace． Advocates of the Fourier transform，which typically include people involved with tele－ communications，enioy the freedom from
initial conditions which is bestowed by an initial conditions which is bestowed by an
origin way back in the mists of time．Advo－ cates of Laplace，including most analogue filter theorists，invariably consider systems where all is quiet before $t=0$－altering the origin of measurement of time to achieve this if necessary－and welcome the op
portunity to include initial conditions ex－ plicity without having to worry about what happens in the mists of time．Al－ though there is a two－sided Laplace transform where the integration begins at
$-\infty$ ，it is not generally used because it causes some convergence complications． Ignoring this difference between the transforms（by considering signals which are zero when $t<0$ ，the Fourier spectrum
can be found from the Laplace transform by writing $s=\mathrm{i} 2 \pi \pi f$ ；that is，by considering by writing $s=12 \pi f ;$ that is，by considering
values of s which lie on the imaginary axis． The z－transform is

$$
\begin{aligned}
& H(z)=\sum_{n=0}^{\infty} h(n) z^{-n}, \text { or } \\
& H(z)={ }_{n=\sum_{-\infty}^{\infty} h(n) z^{-n},}
\end{aligned}
$$

depending on whether a one－sided or two－ sided transform is used．The advantages and disadvantages of one－and two－sided transforms are the same as in the analogue
case Z plays the role of $e^{s T}$ ，and so it is not case．Z plays the role of $e^{s T}$ ，and so it is not
surprising that the response to a（sampled） sinusoid input can be found by setting

$$
z=e^{i 2 \pi f T}
$$

in $H(z)$ ，as we proved explicitly above for the pre－emphasis filter
The above relation between z and means that real－valued frequencies corre spond to points where $|z|=1$ ，that is，the unit circle in the complex z－plane．As you travel anticlockwise around this unit cir－ cle，starting from the point $z=1$ ，the corre－ sponding frequency increases from 0 ，to
$1 / 2 T$ half－way round $(z=-1)$ ，to $1 / T$ when you get back to the beginning $(z=1)$ again． Frequencies greater than the sampling fre quency are aliased back into the sampling band，corresponding to further circuits of $|z|=1$ with frequency going from $1 / T$ to
$2 / T, 2 / T$ to $3 / T$ ，and so on．In fact，this is the circle of Fig． 3 which was used earlier to explain how sampling affects the fre－
quency spectrum！ quency spectrum！
To be continued

Corrections－Frequency synthesizer for c．b．
Figure 1 of the above article in the Septembe we apologize：the anode of the variable－capaci－ tance diode connected to the frequency up up－
down rail should have been connected to down rail should have been connected to
ground，the unmarked capacitor of the v．c．o ground，the unmarked capacitor of the v．c．
circuit is 1 nF and the 1 HF capacitor at the bo
tom of the diagram should be 10 HF ．

LAADERTESTINSTRUMENIS －more performance and reliabitity than you
ever thought possible - momin cver thought possible 무 운

A Leader instrument for every need．

The full range of Leader Test Equipment，the
 Mand

LSW Wi6 SIGNAL GENERATOR

GENERAL TEST

LHM Boin invo mstried PROBE

LDP OT7 LOGGC PROBE

OSCILLOSCOPES

LB0508A OSCILLOSCOPE

LエAロース

SINCLAIR ELECTRONICS LTD London Road，St．Ives．Huntingdon．Cambs．PE17 4H
Telephone：St．Ives（OQ480） 646466 ．Telex： 32250

Sinclic Flectronics Lid．reserve the right 10a aler prices and
specifications on Leader equivent

PORTABLE MAINS DISTRIBUTION NOW WITH EARTH LEAKAGE

A.m. receivers without interference

A method of interference cancellation for double sideband signals by Lewis Illingworth, B. Eng.

Two systems which work with d.s.b. amplitude modulated carriers are
described. As the signals are those propagated in long, medium and short wave bands throughout the world, there is a universal application. The systems make use of the fact that a.m. signals have symmetrical sidebands spreading out each sid
the carrier frequency so that a modulated carrier has a constan
phase, that of the carrier. Interference is not symmetrical even when it spreads through the same be used against it.

Double sideband a.m. transmission has especially desirable characteristics. In the IRE Proceedings for December 1956, John
P. Costas wrote an article "Synchronous communications - the optimum a.m. system" which explains that double sideband, supressed carrier a.m. signals, similar to broadcast signals but with the carrier removed, are easier to generate
than single sideband and permit straightforward synchronous reception with superior performance in the presence of jamming and other interference. What was not mentioned was the additional possibility of cancelling out some of the
received interference when synchronous reception is employed. One article which did cover this was an excellent paper in Wireless W orld by P. L. Taylor (July 1977) showing how one overlapping signal can be completely separated from another. interference was given by J. S. Lothian at the International Broadcasting Convention, September 1974.
Our approach to the interference of interfering signal and home in on them, as in P. L. Taylor's system, but to apply a general correction to a received band and accept whatever improvement one piece of circuitry will give. The systems described here completely eliminate interfering the carrier. For the more difficult case of a fully modulated signal with carrier, at a slightly different carrier frequency from signal-to-noise ratio drops to about 10 dB As interference becomes progressively complex and finally degenerates to noise, he improvement drops to zero. This
performance could be improved but at the expense of some intermadution betwee signal and interference.
ideal, it must be rememee is less than figures show improvement over the generally accepted theoretical limit for reception and represent considerable improvement over the performance of an by conventional circuits and although the quantity of circuitry is not trivial, it is straightforward and works automatically.
Synchronous reception An unexpected and welcome benefit from the addition of these systems is apparent
when used with a synchronous receiver. Such sets, for example the General Electric AN/FRR-48 (XW-1) while operating well on fixed frequencies within the range of carrier phase lock are not at all nice to use when searching for signals. Off frequency unsuppressed carriers are demodulated as
ear splituing whistles. For experiments on signals from a receiver, rather than instruments, a synchronous adapter was tied into the 455 kHz i.f. of a conventional receiver, leading to adequate and painful
listening experience. The new circuits however see such off-tune carriers as nterference and eliminate them accordingly. A synchronous receiver now becomes quite nice to use with off-tune "wasp in the matchbox" accompanied by low background whistle with the mess disappearing as the carrier is tuned within frequency limits.
Development
My work on interference began some four years ago with a system that measured interference amplitude at carrier zero
crossings. An initial guess at interference phase was taken to be that of the incoming ignal, containing both signal and interference components, and the interference amplitude was estimated using that assumption. Signal amplitude
was then deduced and subtracted from the incoming signal-interference composite to provide a better guess. at incoming interference phase. Such a recursive system has to operate within tight, almost
impossible envelope delay restrictions Practical tests suggested however that such a system could be developed for general use and so a patent application (Canadian)
was made. Further development showe fair operation with simpler forms of interference and the system would even reduce noise levels at very low signal-tonoise rations. and the nonlinear recursive operation nigh on impossible to analyze. Response to it in official circles wa negative - (See my letter to Wireles World, 15 September, 1977).
The simple system described here is an outcome of a search for a nonrecursive solution. While it is intended as a basis fo forays into the realm of reducing levels of complex interference and even noise useful tool in cleaning up radio reception.

Theory
A double sideband modulated carrier with carrier frequency f_{c} and modulation frequency f_{m} can be written down as
$m \cos 2 \pi\left(f_{\mathrm{c}}-f_{\mathrm{m}}\right)+c \cos 2 \pi f_{\mathrm{c}}+m \cos 2 \pi\left(f_{\mathrm{c}}+f_{\mathrm{m}}\right)$
where m and c are amplitudes. This is for a simple sinusoidal modulation and ignores modulation phase, but suffices for this basic analysis.
Demodulating the signal by multiplying
by the carrier frequency cos $2 \pi f$
by the carrier frequency $\cos 2 \pi f_{c}$ gives us:
$\left.\underset{m \cos 2 \pi f_{c} \cos 2 \pi f_{c}\left(f_{c}+f_{m}\right)}{m \cos 2 \pi f_{c} \cos 2 \pi} f_{c}+f_{c}\right)$
$=\frac{m}{2}\left[\cos 2 \pi f_{\mathrm{m}}+\cos 2 \pi\left(2 f_{\mathrm{c}}-f_{\mathrm{m}}\right)\right]+$
$\frac{c}{2}\left(1+\cos 4 \pi f_{c}\right)+$
$\frac{m}{2}\left[\cos 2 \pi f_{m}+\cos 2 \pi\left(f_{c}+f_{m}\right)\right]$
$=m \cos 2 \pi f_{\mathrm{m}}+\frac{m}{2}\left[\cos 2 \pi\left(2 f_{\mathrm{c}}-f_{\mathrm{m}}\right)+\right.$
$\left.\cos 2 \pi\left(2 f_{\mathrm{c}}+f_{\mathrm{m}}\right)\right]$
and when filtered leaves a lower sideband at modulation frequencies: $\left(c / 2+m \cos 2 \pi f_{\mathrm{m}}\right.$). The carrier product $c / 2$ is constant and removed by a.c. coupling to
leave the modulation $m \cos 2 \pi f_{m}$. Demodulating the signal by
with the carrier frequency shifted through $90^{\circ}, \sin 2 \pi f_{c}$, gives us:
$m \sin 2 \pi f_{c} \cos 2 \pi\left(f_{\mathrm{c}}-f_{\mathrm{m}}\right)+c \sin 2 \pi f_{\mathrm{c}} \cos 2 \pi f_{\mathrm{c}}+$ $m \sin 2 \pi f_{\mathrm{c}} \cos 2 \pi f_{\mathrm{c}} \cos 2 \pi\left(f_{\mathrm{c}}+f_{\mathrm{m}}\right)$
$=\frac{m}{2}\left[\sin 2 \pi f_{m}+\sin 2 \pi\left(2 f_{\mathrm{c}}-f_{\mathrm{m}}\right)\right]+$
$\frac{c_{2}}{2} \sin 4 \pi f_{\mathrm{c}}+\frac{m}{2}\left[-\sin 2 \pi f_{m}+\sin \pi\left(2 f_{\mathrm{c}}+f_{\mathrm{m}}\right)\right]$

When this is filtered the $\sin 2 \pi f_{m}$ terms cancel to leave absolutely nothing.
The addition of interference leads to low frequency products when demodulated by both \sin and $\cos 2 \pi f_{\mathrm{c}}$. Let us add two interfering tones; $U \cos 2 \pi\left(f_{c}+f_{\mathrm{u}}\right)$ above the
carrier and $L \cos 2 \pi\left(f_{c}-f_{1}\right)$ below the carrier and $L \cos 2 \pi\left(f_{\mathrm{c}}-f_{1}\right)$ below the carrier. D
produces:
$U \cos 2 \pi f_{c} \cos 2 \pi\left(f_{c}+f_{u}\right)+$
has low frequency products:
which has low frequency products:

$$
\frac{U}{2} \cos 2 \pi f_{\mathrm{u}}+\frac{L}{2} \cos 2 \pi f_{1}
$$

Demodulating with $\sin 2 \pi f_{c}$ produces:

$$
U \sin 2 \pi f_{c} \cos 2 \pi\left(f_{c}+f_{\mathrm{u}}\right)+
$$

which has low frequency products:

$$
\frac{U}{2} \sin 2 \pi f_{u}-\frac{L}{2} \cos 2 \pi f_{1}
$$

It is convenient to shift the phase of

$$
\frac{U}{2} \cos 2 \pi f_{\mathrm{u}}-\frac{L}{2} \cos 2 \pi f_{1}
$$

To summarize this part, demodulation of the modulated carrier and interfering signals by the carrier, in its natural phase,
produce the sum of all modulating and produce the sum of all modulating and carrier in quadrature phase produces the difference between the interfering signals above and below the carrier, each shifted in phase by 90°.
Take the case of a single interfering a quadrature carrier to $U / 2 \sin 2 \pi f_{u}$ and shifted 90° to $U / 2 \cos 2 \pi f_{\mathrm{u}}$. This can be easily doubled and subtracted from the in phase demodulated output to leave only
signal components. Unfortunately this can only be done if you know that the interference is sitting above the carrier. If it were below, then the subtraction of - $L \cos 2 \pi f_{1}$ will double the interference The key to the
determine the polarity of the interference in the signal demodulated by the 'phase' carrier. To do this audio from the 'phase' demodulator is again modulated using the frequency of the quadrature
audio, shifted through 90°.

WIRELESS WORLD OCTOBER 1981

For audio derived from a signal with $m \cos 2 \pi f_{\mathrm{m}}+U \cos 2 \pi f_{\mathrm{u}}$, modulation by $\cos 2 \pi f_{\mathrm{u}}$ produces:
$m U / 2 \cos 2 \pi\left(f_{\mathrm{m}}+f_{\mathrm{f}}\right)-\cos 2 \pi\left(f_{\mathrm{m}}-f_{\mathrm{u}}\right)+$
This signal is a mess, and most of it is generally unusable. However by filtering at frequencies below the audio the lower intermodulation product $m U / 2 \cos 2 \pi\left(f_{m}-f_{u}\right)$ may pass the filter but being smaller does affect the polarity of the filter output
This d.c. value U can be used in two ways:

1. By
2. By providing the polarity of the interference it is simple to devise a circuit to either add or subtract the quadrature demodulated interference from the phase demodulated signal-with-interference composite. cies are present and there is no guarantee that the amplitude of the quadrature demodulated interference reflects the required 'phase' demodulated interference amplitude. The envelope of the interfer-
ence at maximum, when interference is in quadrature with the carrier, may well be a minimum when it is in phase. Here the d.c. value filtered from the second modulation can provide a more accurate ampli-
tude reference. It is re-modulated by the tude reference. It is re-modulated by the
quadrature derived interference frequency to form an interference estimate and is then subtracted from the phase demodulated signal-interference composite.
While it is easy to While it is easy to see how the system works in rejecting a single interfering tone,
the many frequencies present in real interference lead to complex analyses that are out of place here. Difficulties arise in estimating the phase of multitone interfer-
ence, for example what is the instantaneous phase of a mixture of frequencies ranging between 300 and $3,000 \mathrm{~Hz}$? This difficulty is overcome by artificially raising signal and interference frequencies before processing so that they appear to be sinu-with-interference component can be readily modulated by a signal having the instantaneous frequency and phase of the quadrature interference component. Not only does this make modulation possible, it has the added advantage of removing
many modulation and intermodulation products to a high frequency where they
can be eliminated by a low pass filter. The
phase of even a complex difference signal phase of even a complex difference signal
remains a good estimate for the phase of the interference appearing in the 'phase' demodulation and permits excellent operation with complex signals. Following interference cancellation, the correct fre-
quency range has, of course, to be quency range has, of course, to
restored. Systems employing both approaches are
described. The performance of each can be described. The performance of each can be
modified by changing the bandwidth of modified by changing the bandwidth of
the low pass filter in the interference amplitude/polarity circuit. As the frequency response here is increased, the system follows increasingly rapid changes in interference amplitude and frequency, accompanied by increasing intermodulation between signal and interference. The limit equals that of the signal modulation. At this point interfering white noise is attenuated by some 6 dB , but there is an associated loss in signal level of about 3 dB due to the rapidly changing interference phase collecting bits of signal as it goes.

Circuit description

The amount of circuitry involved is quite xtensive, so rather than getting involved limited to the functions of the various parts and only a couple of circuits are shown for clarification. There are two parts to the
system: a synchronous receiver adapter that puts received radio signals into a suitable form for processing, and the interference cancelling system itself.

Synchronous receiver

adapter

This system, shown in Figure 1, operates from a 455 kHz signal taken from a conventional receiver i.f. amplifier. It is modfrequency chosen to be high enough so that signals are well clear of the audio range and yet not too high for c-m.o.s
switches to operate effectively as modulaswitches to operate effectively as modulasuch as the LM218 operate without significant delay. The carrier is extracted by a 200 Hz bandwidth bandpass filter, and frequency lock achieved by a frequency discriminator which generates a control voltage for the 555 kHz heterodyne oscilla-

At first sight this system must appear cumbersome in an age of phase locked loops. The reason for it is quite simple: phase locked loops do not operate well under high interference conditions; the
loop frequency response must be high enough to permit a lock to be regained after a disturbance, a necessary response that allows interference to get into the loop and so leads to phase jumps in the oscillato prevent this happening also prevents phase locking. In the early synchronous receivers phase jitter would not cause much of a problem because a 10° phase plitude to cos 10° e.985 a drected amplitude to $\cos 10^{\circ}, 0.985$, a drop of only
1.5%. With these interference cancelling systems, however, the quadrature value of the signal under the same conditions, sin $10^{\circ}, 0.174$ is considerable, 17.4%, and is seen by the circuitry as interference. A phase perturbations in the detected carrier. Two carrier phases are required, one in phase with the incoming signal and the dulate the 100 kHz if signal to produce audio. The 'in phase' demodulation contains the sum of modulation and interfering signals, the 'quadrature' demodulation has the difference between interfering frequen. A final step adjusts the relative phases
rind of these two outputs by 90° so that signal and interfering components are either in phase or 180° out of phase. It is convenient refer to the phase corrected phase and quadrature demodulated outputs as 'sum'

Fig.2. Carrier filter for synchronous
receiver
and 'difference' signals because they are similar to equivalent signals derived from Figure 6 shows a
phase shift network. Two RC networks both attenuate and phase shift the 'sum' and 'difference' audio signals in such a way that attenuation is uniform over the fre-
quency range but there is a constant 90° quency range but there is a constant 90°
phase difference produced in signals traversing them.
Figure 2 shows the carrier filter in detail. This has phase and quadrature demodulators and modulators together with los pass active filters to produce extremely
stable amplitude and phase characteristics. It is the same type of filter that is used with remarkable success in navigation equipment and is not difficult to make.
The 100 kHz i.f. signal is demodulated asing 100 kHz phase and quadrature referquency outputs. Figure 7 shows a typical divider to generate these carriers from a 400 kHz stable source. A matched pair of 100 Hz cut off low pass active filters elimihigher frequencies. These signals are remodulated, again in phase and quadrature, back to 100 kHz and added together. A simple 100 kHz conventional filter removes higher modulation products to leave a
clean reconstructed carrier. The result is an overall 200 Hz bandwidth with stability equal to that of the reference oscillator. ne point to watch is the complete cancellation of carrier leaks in the modulators,
these will tend to produce jitter in the carrier output.
A 400 kHz
drives a divide by 4 circuit to generate 100 kHz phase and quadrature carrier outputs. A conventional phase locked loop ties these carriers to the squared up
100 kHz filter output. Such a phase loop in this position causes no problem because interference has been eliminated from the system.
Figure 3 shows the frequency discriminator used to derive the frequency control
voltage for the 555 kHz heterodyne oscillator. This is driven by low frequency si nals from within the carrier filter. The 'quadrature' demodulated low pass filter output is differentiated to generate a signal that increases with amplitude as the fre-
quency difference increases between the 100 kHz received carrier and 100 kHz reference. It is in phase with the 'phase' signal when the carrier frequency is higher than the reference and is 180° out of phase when the carrier frequency is lower. The dif-
ferentiated quadrature signal is added to the phase signal and results in a low frequency a.c. voltage whose amplitude increases when the carrier is above the reference and decreases when it is below. A inverting the differentiated 'quadrature' low pass output before adding to the phase signal. Here the amplitude decreases when the carrier is above the reference and infied and applied to a differential are rectigenerate a d.c. oscillator control voltase. The frequency lock is to within a coupl of hertz under most operating conditions,

Hz

he

 R 2 $=$. , . 1 -

[^2]
$=$

WIRELESS WORLD OCTOBER 198
and by virtue of control by the reference tant that the carrier frequency be main tained close to the reference in order to minimize off tune phase errors introduced by the carrier filters.
Interference cancelling
system
The first step in interference cancellation is to raise the frequency up out of the audio range so that everything appears sinuso 'sum' ' the first arrangement, Figure 4, th 'sum' and 'difference' audio outputs from phase shift networks, and modulated by phase and quadrature 100 kHz carriers to form upper sidebands of 100 kHz . This is conventional phase-shift method single sideband generation. Each signal is then
filtered to remove higher order compo nents. The 'difference' signal is squared up by a zero crossing detector and the output used as a carrier to demodulate the 'sum' A low pass filter passes only the d.c. cominterference polarity is extracted by a zero crossing detector, converted into a logic level and used to control switches to select either the direct or the inverted 'difference signal. This puts the interference
into the correct polarity where it is subtracted from the 'sum' to produce an improved signal-to-noise ratio. The signal is still at 100 kHz , so a final step is demodulation using the 'phase' 100 kHz carrier to generate an audio output.
starts off in a similar manner. Signals 5 shifted to 100 kHz , the 'difference' signal is squared up and used to demodulate the 'sum', and the output low pass filtered. In this system the low pass filter output is polarity of the interference. It is remodulated by the same squared up difference signal to generate reconstituted interference for subtraction from the 'sum' signalby demodulation down to audio.

Comments

Many system improvements suggest themselves and the most straightforward are currently being developed and assessed. There is unfortunately a practical limit beyond which processing errors in these

analogue systems outweigh advantages gained by increased complexity. We can look forward though to steadily improved signal-to-noise ratios as time and innova
tion permit This arti
an optimum or ultrim pretend to describe terference cancellation. The intent is to show that the performance we now accept from our radios is not as good as it could be made by straightforward circuitry. The approach has value both in the improvement of radio reception and also as a basis
for further experimentation, particularly
into the nature of interference and band limited noise.
The circuits are particularly adaptable to attenuation of interference when something is kerfere, for example, milite of the ming or c.w. interference on frequency shift radio telegraphy.
There is an equivalent system under development for f.m. receivers. This takes the constant f.m. signal amplitude as referstant phase. While showing promise, the technique is not yet sufficiently developed to warrant publication

New UK group supports semiconductor manufacture

One of the first commercial ventures of the new British Technology Group formed by the merger of NRDC and NEB (News, semiconductor manufacture This is a joint enture with the UK company PlasmaTherm Ltd, a subsidiary of Plasma-Therm Inc of Kresson, New Jersey, USA, who supply plasma process equipment (see becost of $£ 170,000$ of a wo-year to develop new process control equipment for sale to European manufacturers of semiconductor devices. The equipment will be based on radio-frequency plasma
chemistry techniques, which offer advantages over traditional wet cher advanmethods used in the fabrication of emiconductor products.
A microprocessor-based monitoring turers more precise control give manufacprocedures based on radio-frequency plasmas by using optical emission spectroscopy. Also, a new power unit will be developed to complement Plasma-Therm's tors and so offer the ability to in generaadhesive qualities of plasma deposited passivation layers which protect the i.cs.

The agreement includes an arrangement for the NRDC part of BTG to recover its destment by a sales levy on relevant pro-
Radio-frequency plasma chemistry techniques are being used more and more in making semiconductor devices, in place of vantage is the ability to create the finer circuit patterns needed for producing a larger number of circuit elements per unit area. Certain gases, when ionized, form a surfaces to selectively remove unwanted material without residual contamination.

wW303
Storage oscilloscope The main unit of Nicolet's latest 4094 with 16 K -word $\times 16$-bit nemory capacity. Two dual-chan-
nel input-amplifier modules, the 4851 with 15 -bit a-to-d conversion and 100 kHz sampling rate and the
4562 with 12 -bit conversion and 456 with 12 -bit conversion and
2 MHz sampling, can be added to the main unit in any combination
for either two or four-channel for either two or four-channel
peration as the main unit's memory can be shared. Permanent waveform storage is possible using single floppy-disc drive, the F-43, the XF-44 dual disc-drive with our-channel versions. Cursor posiioning, display expansion (up to
$\times 256$), r .m.s. calculation and waveform addition, subtraction and inversion are standard on the 4094
and further programs for waveform and further programs for waveform
multiplication, integration, etc, are
available on disc. Both plug-in inut amplifiers have pre- and postrigger delay controls and where
wo amplifiers are used they can be operated independently thus forming two dual-channel oscilloscopes with a common display. An RS232
and IEEE488 jo interface and digital plotter are available for use with the oscilloscope. The manufactur-
ers have also introduced a small ers have also introcuced a smal
$4000-$-line FF spectum analyzer,
the 100 A , for 0 to 20 kH . Nicolet Instruments L Road, Warwick CV34 5XH
WW302

Softy 2
Following the success of Softy, a
ow-cost micro tool for e.p.r.o.m. programming, copying and r.o.m.
emulation, the designer has recently introduced an enhanced ver-
sion called Softy 2. This unit is
imila then
sion called Softy 2. This unit is
similar to the original version which
displays the contents of 512 contiguous addresses in hex form on television screen via an interna
modulator. Improvements include modulator. Improvements
an expanded monitor and keypad
(28-key, two-level) (28-ky, two-level) to provide extra
functions such as serial (RS232) anctions such as serial (RS232)
and parallel (Centronics) routines
for connection to other computer for connection to other computer
systems or printers. Code can also e stored on cassette tape using
new system called Transwift which is claimed to be tolerant of speed
and level changes and level changes. The buffer
r.a.m. has also been increased to
K. r.a.m. has also
2 K and the unit will now program
no or copy the 2716, 2732, 2532 family
of single-ril of single-rail e.p.r.o.ms. To make
r.o.m. emulation easier, the
ddress and data lines have beet r.o.m. emulation easier, the
address and data lines have been
buffered and the unit is supplie buffered and the unit is supplied
with a r ribbon cable and 24-pin
wis plug. Softy is only available built
and tested in a black plastic case
and is supplied with a separate and is supplied with a separate
power supply for around $£ 169+$ v.a.t. Dataman Designs, Lombard
House, 24 Cornwall Rd, Dorchester, Dorser DTI 1RS.
WW303

Low-noise f.e.
preamplifier
At 1 MHz , the noise characteristic of the AH0013 linear wideband
preamplifier is quoted $800 \mathrm{p} / / \mathrm{VHz}$. An f.e.t. input is used in this hybrid device giving a
typical input impedance of $100 \mathrm{G} \Omega$ typical input impedance of $100 \mathrm{G} \Omega$
and maximum bias-current requirened maximum bias-current require-
ment of 50 pA . Sonar, audio, infra-
red detection and red detection and communication
equipment applications are sug equipment applications are sug-
gested for the device. Packaging is ${ }_{8}$-pin di.i.l. and the operating temperature range is from $-65^{\circ} \mathrm{C}$ to
$+125^{\circ} \mathrm{C}$. DI-AN Data Systems +125응. DI-AN Data Systems
Ltd, Mersey House, Battersea Rd,
Heaton Mersey Heaton Mersey, Stockport, Che-
shire SK4 3EA shire SK4 3E
WW 304

WIRELESS WORLD OCTOBER 198

STDIEBRANTDS woa

Basic holidays

For as long as I can remember, I've bee ery much in favour of lots of health xercise. I can sit around ardens and iog ing round the park all day long withour eeling any the worse for it, and I'm sure it has all helped to shape my easy-going and Therant outlook on life.
Those summer camps for kids in
America have, likewise, long been acus of admiration for me: a stroke of absolute genius, I've often thought. We British have developed hypocrisy to a pretty ex eptional level, but who to loan from us. hose camps has nothing to learn from
No sooner do the 2.4 brats come belting home from school for the summer holidays than they are given a hose down, provided with enough of everything to avoid the need for further communication in the land to be coped with by others, while Ma and Pa take off for the sun. And it's all done in such a way that even the kids themselves, and probably the parents too, Oumetimes, Life, and all that. That's what I thought, anyway.
But it's all gone wrong. No longer do emergent Americans go on long walks, swim, climb grizzly bears and fish for short pants and deadly seriousness, they are hooked on computing
I haven't been'able to find out any more details except that, at the camp I've heard of, the kids are turned loose on the compufew seconds to swallow a pecan pie washed down with a glass of clam chowder (I really must try to discover what all these things are) stick with it till sack-time, as I believe it is called. According to the man who runs
the operation, it is quite difficult, short of resorting to the garrotte, to stop the little people computing away like crazy when it is time for the Sandman to come and put sleep in their eyes. What they compute, I have no idea. Perhaps it's the answer to in Florida with Mom and Pop?"

Oasis

I've always been a bit envious of anyone who can eat snails, or mussels, or oysters, or sheep's eyes or any of those things with
evident relish and without any apparent evident relish and without any apparent
coercion. There must be a lot I'm missing by being so pernickety, but even just writing about eating oysters is making me feel all peculiar. It isn't just the dishes themselves, either, that make me curl up

- you only have to mention sheep's eyes when there is a hard-boiled egg with the salad to put me right off. Association, you see, that's what it is.
I hope this flaw in my make-up isn't characteristic of the majority of c.b. enthusiasts, because the fraternity now has its.
own restaurant: its name - The Eyeball own restaurant: its name - The Eyeball
Bistro. It's in Princes Street, near Oxford Circus. Of course, it doesn't mean they're going to serve eyeballs (it doesn't, does it?) but the damage is done, so far as I am Breaker Bistro' or 'Eighty-eights' and accept the risk of being overwhelmed by demolition workers or bingo players? Further grounds for misgivings arise from the declared intention to print the
menu in c.b. jargon. Now, at that point, I do really think one has to demur. With something as serious as food and drink, there must be no room for misunderstand ing, and this idea is a most dangerous precedent. I realise that menus are
sometimes written in French for reasons of snobbery, but I've learned to get along with that, and it doesn't change every other fortnight. "Superslab with i.cs, in tears" is no way to talk about steak and chips in onion gravy and compassionate grounds, the idea is dropped.

Postillions beware!

Translation by computer of foreign languages has always been good for a laugh. engere was a story that a lucrative civil
entract was once turned down because the contract, translated by computer from the Russian, insisted that a
flock of water-sheep would be needed. Since the company didn't have anywhere to keep the animals, and couldn't find out what they were anyway, it decided to forget the whole thing and work for the Arabs, instead. So a German company,
whose sales manager knew how to translate the Russian for 'hydraulic ram', got the the Ru
job.
But
But we're over all that sort of thing now. At least, I hope we are, because the EEC is wanting to use a new system, Eurotra,
which they hope will be able to cope with the 72 language pairs in use in the community when Portugal and Spain get their tickets - that's each of nine languages translated into all the other eight.
So it had better be a good system, and it So it had better be a good system, and it
ought really to be able to handle the odd bit of idiom, slang and dialect. The thought of a British MEP, infuriated by yet another bland explanation of why butter mountains and wine lakes are not bad
"What a load of old cobblers!" is a sombre one. Unless Eurotra can deal effectively with vituperative outbursts of this kind, here are problems ahead. One can magine the blind panic which would be the natural result of the foregoing innocent while the premises were searched for the elderly shoemakers and the whole fabric of civilized Community life would be im perilled.
Maybe Esperanto would be a better idea.

Man-powered flight

Pilots have a lot to cope with. It inn't all pretty clouds and sending the air hostess for cups of coffee every few minutes: not by any manner of means. It might be like that some of the time, I dare say, but every
now and then their reactions are put to the now and then their reactions are put to the
test when things go wrong. You don't want to be too relaxed when, for example, an engine goes on strike just after take-off, or when the controller tells you that another aircraft is making a head-on approach closing speed of around 1200 knots.
To help pilots get used to little proble of this kind, airlines make use of flight simulators, which can be programmed with all kinds of 'failure'. Accelerations, visual effects and sounds are provided to
make the simulation as realistic as it can be, the sounds being recorded in a real aircraft and played back under the control of the simulator.
Clearly, as many sounds as possible are needed, but a chap I know who used to
record the aircraft noises tells me there was one he never could get in the normal way. Birds are unco-operative little beasts, and he found it quite difficult to persuade them to fly into windscreens to order so he could record the splat and allow birdstrikes to be
simulated on the ground. So, I am about to explain a bizarre little scene which someone may have seen and wondered about (though not for long, probably - the world is full of strange people). What they had to do, it seems,
was to buy some frozen, oven-ready chickens from Sainsbury's, thaw them out and give them to several brawny characters with good right arms. On the word of command, the chaps hurled the fowls with nose cone, while the tape recorder inside collected the bangs. Played back at a higher speed, it gave just the right effect and everyone (except the chickens) was happy.

World's most powerful
BASIC pocket computer
CASIO FX-702P

 ONLY £119.95

 FX-602P

World's most versatile

alarm
chronograph watch CASIO AX-210

ONLY $£ 29.95$
 \qquad
\star ANALOGUE Countup. with digital timing of net, lap and first and second place times
trom $1 / 100$ sec to 1 hour. Confirmation i ignal

F-602 A Aovanced programmable. Up to 512 steps $\quad \mathbf{£ 7 4 . 9 5}$

THE LEADING U.K. SPECIALISTS Dept. W.W.
Telephone: 0223 East Cambridge CB1 1DB Telephone: 0223312866
WW - 072 FOR FURTHER DETAILS

THE W.W. DISK OFFER RE-OPENS AT LAST

We have obtained a limited stock of European single sided mini floppy drives so please get orders in soon
Circle the enquiry number for data Total U.K. price including VAT at. 15% and carriage, CWO

ONLY $£ 155$ EACH INCLUSIVE

(Drive $£ 132, P$ and $P £ 2.78$, VAT $£ 20.22$)
Please make cheques and P.O.s payable to W.W. Disk Offer and send to: W.W. DISK OFFER

49 Milford Hill

 BatfordPlease call 0582-429122 to check on availability before ordering
Allow 21 days for delivery. This offer applies to U.K. only and is subject to availability. For non wW - 051 FOR FURTHER DETAILS
$\star \star N E W \star \star \star$ FX-3600P ${ }_{38}$ program steps $\quad \mathbf{£ 2 2 . 9 5}$

HPMER

HM 399
Winl 307

HM312

$\underset{y}{\text { H: Bandwidth }}$
£ 1,458

ANTRFFRNFW\% XLR CONNECTORS

 XLRLNE 11C... \quad XLR LNE MAIN SERIES

 Kis.
KELSEY ACOUSTICS 28 POWIS TERRACE, LONDON W11 1 JH WW - 038 FOR FURTHER DETAII

Quite simply the test way to make music ...

- COMPREHENSIVE INSTRUCTIONS WITH EVERY KIT © KITS REALLY COMPLETE - EVEN SCREWS AND WIRE! ©

- SUPERIOR MATERIALS SUPERIOR FINISH SUPERIOR SOUND -

muild the TrAnscendenv range from POWERTRAN
- WORLD LEADERS INELECTRONICKITS
- MONEY-BACK GUARANTEE (ly fou are not tompletely satisfied with your Powerran Kit, retur it.)
- SOLDERING PRACTICE KIT - FREE on request with your first kit, to assist newcomers!

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS. SP10 3MM - ANDOVER (0264) 64455

The November issue of Electronics Today International features no less than 100 circuits designed for ETI by Tim Orr - amplifiers, timers, alarms and filters.
Build the main constructional project - an advanced music processor incorporating auto double tracking, phasing and flanging effects. There are four available scan speeds and the effects can be operated manually or in one shot mode by button or foot switch or left free running. All electronic switching of DC control signals offers noiseless effects change-over.
Don't miss this bumper edition of Britain's best electronics magazine. ETI NOVEMBER - 100 brand new circuits, a sophisticated music processor design, constructional projects, regular features and news from the world of electronics.

ON SALE-OCTOBER 2nd ONLY 65p at your newsagent

100 CIRCUITS ISSUE!!

JOIN THE MICRO REVOLUTION WITH YC1000L DATA LOGGER
This new laboratory grade instrument fatures microproces-
sor control for increased versatility. Its many functions in cluce - a frequency ounter 0.02 ppm accuracy), a preci-
sion A.C./D.C. voltmeter, thermal sensor and a sion A.C./D.C. Voltmeter, the ermal sensor and a
programmable timer. The test results may be read direct
from the Digital display or recorded on the integral logger We are currently offering the YC1000L at the UNBELIEVABLE price of $£ 680$ plus V.A.T. Should you require further informa-
ion on this or any of our other products please write

SOUTH MIDLANDS COMMUNICATIONS LTD.
Osborne Road, Totton, Southampton SO4 4DN, England
Tel: TOTON (0703) 867333 - Telex: 477351 SMCOMM G

WIRELESS WORLD OCTOBER 1981

DAVNOF ANEW EAA OLO

PNWER NT TD or without heatsink. Having decided the system you want - home hi-fi
(models HY 30 . 60 or 120 for example), super

BIPOLAR

AMPLIFIER
WITH $\underset{\text { HEATSINK }}{\text { WITH }}$

BIPOLAR Standard, with heatsi									Without heatsinks				
$\begin{aligned} & \text { MOOEL } \\ & \text { NUMBER } \end{aligned}$	$\begin{aligned} & \text { oupury } \\ & \text { ouputh } \\ & \text { Wouts } \end{aligned}$			$\begin{array}{\|l\|} \hline \text { SUPPLY } \\ \text { VOLTAGE } \\ \text { TYPIMAX } \\ \hline \end{array}$	$\underset{\substack{\text { size } \\ \text { mm }}}{ }$	$\begin{gathered} \mathbf{w} \\ \text { wns } \\ \hline \end{gathered}$	price	vat	$\begin{aligned} & \text { MODEL } \\ & \text { NUMBER } \end{aligned}$	$\begin{gathered} \text { SIZE } \\ \text { in } \mathrm{mm} \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{gn}} \end{aligned}$	PRILE	vat
HY30	15 w 488	0.015%	<0.0066	$\pm 18 \pm 20$	76x6840	240	67.29	11.09					
Hrgo	30w 4.88	0.0150	<0.006\%	$\pm 25 \pm 30$	76868840	240°	ع8.33	11.25					
HY120	60w 48Ω	0.01%	<0.006	± 3540	$120 \times 78 \times 40$	410	${ }^{\text {17, } 78}$	£2.62	HY120P	$120 \times 26 \times 40$	215	f15.50	12.33
ну200	120 w 488	0.01\%	<0.006\%	± 45550	$120 \times 78 \times 50$	515	22.21	¢3.18	Hy200	$120 \times 26 \times 40$	215	£18.46	12.71
нצ400	240w.48	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 788 \times 100$	1025	133.83	c4.71	Hy400p	$120 \times 26 \times 70$	375	E28.33	14.25

HEAVY DUTY		with heatsinks								Without heatsinks			
H0120	60w4.88	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 50$	515	E22.48	1.37	H0120P	120026850	265	19.94	${ }^{2} 2.98$
H0200	120w4488	0.01\%	<0.006\%	$\pm 45 \pm 50$	12078880	620	t27.38	E4.11	H0200p	120026×50	265	t23.63	[3.54
ноя00	240 w 4 A	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	¢38.63	f5.79	но400p	120026×70	375	E34.28	25.14

MOSFET Uiltra.fi, with heatsinks \qquad

POWER SUPPLY UNITS				FP480 BRIDGIMG UNIT FOR
MODEL NO. FOR USE WUTH		PRICE	vat	
PSU30	$\pm 15 \mathrm{~V}$ combinations of HY6/66 series to			
		£4.50	${ }^{\text {f }}$ 0.68	DOUBLING POWER
	series except HY67 which requires the PSU30.			
${ }^{\text {PSU36 }}$	${ }^{1} \mathrm{Or} 2 \mathrm{HY} 30$	${ }^{\text {E8. } 10}$	${ }_{\text {f } 1.22}$	same tree of double the oowero outuput
PSU60	$1 \times$ HY 12OOHY $120 \mathrm{P} / \mathrm{HD}^{120 / H D 120 P}$	${ }_{\text {f }}^{\text {f10.94 }}$	f1.64	
PSU65	$1 \times$ MOS $12011 \times$ M 0 S 120 P	${ }_{\text {f }}^{13.304}$	¢1.96	
PSU70	1 or $2 \mathrm{HY} 120 / \mathrm{HY} 120 \mathrm{P} / \mathrm{HD} 1201 \mathrm{HD} 120 \mathrm{P}$	f_{15192}	£2.39	connector.tit thus becones posistib to
${ }_{\text {PSUST50, }}$		${ }_{\text {c }} 16.26$	${ }_{\text {¢22,43 }}$	(e)
pSU95		¢16.20		
PSU180	$2 \times \mathrm{H}$ 2001HY $200 \mathrm{P} / \mathrm{HD} 200 / \mathrm{HD} 200 \mathrm{P}$			Price E4.79 +72 P . V.A.T.
PSU185	$1 \times \mathrm{HY} 400 / 1 \times \mathrm{HY} 400 \mathrm{P} / \mathrm{HD} 400 / \mathrm{HD} 400 \mathrm{P}$	£21.34	${ }^{\text {E }}$ 3.20	
PSU185	1 or 2 MOS 200/MOS 200P/ $1 \times$ MOS400	£21		

GOODS BY MALL ORDER DESPPTCHEE WITHINN 7 DATS

OF REEEEINIIG YOUR OiDER

Which modules?

in launching eighteen different units all within amazingly compact cases to help make complete audio systems using I.L.P. power amplifiers, we bring the most excitin
most versatile modular assembly scheme ever tor constructors of all ages and experience.study the list - see how these modules will combine to almost any audi
project you fancy - and remember all L. . . . modules are compatible with each other project you fancy - and remember all I.L.P. Modulus are compatible witheach other
they connect easily. Modules HY t to HY 13 measure $45 \times 2 \times 40 \mathrm{~mm}$. HY 66 to HY 7 7 measure $90 \times 20 \times 40 \mathrm{~mm}$. They are so reliable that all I.L.P. modules carry a 5 year quibble guarantee.

MODEL NO	MODULE	DESCRIPTION/FACILITIES	CURRENT REQUIRED	PRICE	VAT	The modules are encapsulated and includ latest design high quality cilip-on edge connectors.
HY6	MONO PREAMP	Mic/Mag. Cartridge/Tuner/Tape/ Aux + Volume/Bass/Treble	10 mA	¢6.44	£0.97	
HY7	MONO MIXER	To mix eight signals into one	10 m	£5.15	£0.77.	
HY8	StEREO MIXER	Two channels, each mixing five signals into one	10 mA	¢6.25	¢0.94	
HY9	STEREO PRE AMP	Two channels mag. Cartridge/ Mic + Volume	10 mA	¢6.70	£1.01	
HY11	MONO MIXER	To mix five signals into one + Bass/Treble controls	10 mA	£7.05	£1.06	
*HY12	MONO PRE AMP	To mix four signals into one + Bass/Mid-range/Treble	10 mA	¢6.70	£1.01	For easy mounting we recommend B6 Mounting board for modules HY6 - HY13$78 p+12 p . \text { V.A. }$
*HY13	MONO VU METER	Programmable gain/LED overload driver	10 mA	¢5.95	£0.89	
HY66	STEREO PRE AMP	Mic/Mag. Cartridge/Tape/Tuner/Aux + Volume/Bass/Treble/Balance	20 mA	£12.19	£1.83	
HY67	STEREO HEADPHONE	Will drive headphones in the range of $4 \Omega-2 K \Omega$	80 mA	£12.35	£1.85	B66 Mounting board for HY66-HY7
HY68	STEREO MIXER	Two channels, each mixing ten signals into one	20 mA	£7.95	£1.19	$99 p+13 \mathrm{p}$. V .
HY69	MONO PRE AMP	Two input channels of mag. Cartridge/ Mic + Mixing/Volume/Treble/Bass	20 mA	£10.45	£1.57	AII I.L.P. modules includ full connection data.
HY71	DU̇AL STEREO PRE AMP	Four channels of mag. Cartridge/Mic + Volume	20 mA	£10.75	£1.61	
*HY72	VOICE OPERATED STEREO FADER	Depth/Delay	20 mA	£ 13.10	£1.97	
*HY73	guitar pre amp	Two Guitar (Bass/Lead) and Mic + separate Volume/Bass/Treble + Mix	20 mA	£12.25	£1.84	
tHY74	STEREO MIXER	Two channels, each mixing five signals into one + Treble/Bass	20 mA	¢11.45	£1.72	
tHY75	STEREO PRE AMP	Two channels, each mixing four signals into one + Bass/Mid-range/Treble	20 mA	¢10.75	£1.61	
+HY76	stereo SWITCH MATRIX	Two channels, each switching one of four signals into one	20 mA	Tobe announced		I.L.P. Products are of British
+HY77	stereo vu METER DRIVER	Programmable gain/LED overload driver	20 mA	¢9.25	£1.39	Design and Manufacture.

- Ready Ausust - may be ordered now

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a sepparate
sheet of paper, quoting the name and date of this sournal

 V.AAM ASTMAY
PAARCLAYCARD MADE RY ACQURED.

ALL WITH ILP'S 5 Year No QUIBBLE GUARATIEE
TO: LL.P. ELLECTRONICSLTD. ROPER CLOSE CANTERBURY CT2 2 EP

Please debir my Access//Brclaycard Account No.
NAME:-
ADDREs....
signature...
WW $5 / 10$

COMPONENTS • DEMONSTRATIONS © SPECIAL OFFERS • MAGAZINES • BOOKS

Any one of the 17,000 people who thronged the RHS for the Breadboard exhibition last year will need no introduction to this year's premier show for the electronics enithusiast. They already know all about the demonstrations, bargain sales, bookstalls, games, kits, computers and music machines to be found at BREADBOARD 81. They could
name you all the leading companies who name you all the leading companies who were there to se
fantastic prices.
Even those lucky 17,000 would be surprised to hear that this year we've improved BREADBROAD still further! More stands, more demonstrations and wider gangways to make it all easier to enjoy! BREADBOARD 81 is the place to be from November 11 th to 15 th at the RHS Hall. Why not come and find out for yourself how much you missed last year? We can promise plenty to see and do at BREADBOARD 81. Close to Victoria Station and NCP car parking facilities

Cost of entry will be $£ 2.00$ for adults and $£ 1.00$ for children under 14 yrs and O.A.P.s. ORGANISED BY MODMAGS LTD., 145 CHARING CROSS ROAD, LONDON WC2H OEE.
ROYAL HORTICULTURAL SOCIETY'S NEW HALL, GREYCOAT STREET WESTMINSTER, LONDON S.W.1.

Sowter Transformers

With 40 y years' experience in the desigin and menviacture of several hundred thousand trantormers

AUDIO FREQUENCY

TRANSFORMERS OF EVERY TYPE
YOU NAMEIT! WEMAKEIT!
OUR RANGE INCLUDES:
Microphone transformers (all types), Microphone
Splitter/Combiner transformers, Input and Output Splitter/Combiner transformers, Input and Output
transformers, Direct Injection transformers for Gui-
tars, Multi-Secondary output transformers Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance
matching transformers, Gramophone Pickup transformatching transtormers, Gramophone Pickup transfor-
mers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers
for PCB mounting, Experimental transformers, Ultra for PCB mounting, Experimental transerormers, Ultra
low frequency transformers, Ultra linear and lransformersy for Transiormers, Ulitra linear and other
500 500 watts, IIductive Loop transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line
transformers (from a few watts up to 1.000 watts) transtormers (from a few watts up to 1,000 watts), 100
volt line transformers to speakers, Speaker matching transformers (all powers), Column Loudspeaker trans-
formers up to 300 watts or more We can design for RECORDING QUALITY, STUDIO
QUALITY, H-FI QUALTY OR PA PRICES ARE HIGHLY COMPETITIVE. AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock OUR CLIENTS COVER A LARGE NUMBER OF BROAD CASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUFIRMS. Export is a speciality and we have ADDRESS clients in the COMMONWEALTH, EEC, USA, MIDDLE EAST, etc. Send for our questionnaire which, when
completed, enables us to post quotations by return.

E. A. Sowter Ltd.

The Boat Yard, Eullingham Road LD. (Established 1941), Reg, No. England 303990
Phone: 0473 52794 \& 0473 219390 : Telex: P.O. Box 36, loswich, IP1 2EL, England
WW - 019 FOR FURTHER DETALLS

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTER 3982, £70

$$
\begin{aligned}
& \text { EPSON MX-80 80.GPs } 3982 \text { IBM I/O PRINTERS DOT } \\
& \text { MATRIX PRINTER WITH SPECIAL INTERFACES }
\end{aligned}
$$ MATRIX PRINTER WITH SPECIAL INTERFACES. VDUS, ASCII KEYBOARDS, ASR, KSR, TELETYPES,

PAPER TAPE READERS, PAPER TAPE PUNCHES, SCOPES, TYPEWRITERS, FANS $4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}$. POWER
SCOE SUPPLIES, STORE CORES, TESTEQUIPMENT AND OPEN: MONDAY TO FRIDAY 9 a.m.-5 p.m.

COME AND LOOK AROUND
SALCOT MLL, GOLDHANGER ROAD
PHONE MALDON (0621) 57440
WW - 024 FOR FURTHER DETALS

EPROM PROGRAMMER

NMOS, CMOS

- Displays contents of EPROMS, instruction codes and failure details.
- Protects EPROMS
- Self tests automatically.
- Simple operation for semi skilled personnel.
- Copies from master EPROM or RAM.
- Verifies master/copies. RAM/master, RAM/ copies
- Serial or parallel interface
 16-20 KELVIN WAY, CRAWLEY, SUSSEX. RH10 2TS.
TEL. CRAWLEY (0293) 510448. wW-088 FOR FURTHER DETAILS

ww - 060 FOR FURTHER DETAILS

TITAN TRANSFORMERS AND COMPOMENTS DEPT. WW. CENTRALHALL CHAMBERS DUNCOMBE STREET GRMSBY Mail order. Prices include 15% V.A.TSend for our catalogue		

WW - 048 FOR FURTHER DETAILS

SIEMENS

FLOPPY DISK DRIVES UNBELIEVABLY LOW PRICES

Fully Shuggart Compatible Siemens $8^{\prime \prime}$ single-sided disk drives are available now with unbeatable prices. dirives are available now with unbeatable prices. FDD 10008 Sind

 NEW
 WORDSTAR 3.0 ..00 SPELL STAR MAL
 B.S. Limited are Dealers for the new PBM: Performance brought you Word Star.)
 All hardware with 5 Megabyte. Winchester hard disk, termi- nal and printer with a full range of busin able and printer with a full range of business software aviai- able as complete package. Prices from... Also Onyx Z80 and Z8800 Business Computer.............0.00.00 System. Prices from ... $66,250.00$ EXTRA DISCOUNT

A FURTHER 5\% DISCOUNT MAY BE DEDUCTED FROM RICES SHOWNIF CASH/CHEOUE ISSENTWUTHORDER.
ALL ABOVEPRICESARE EXCLUSIVE OF VAT AT 15\%
IRVINE BUSINESS SYSTEMS

TEE: 10294175000
TEEEX: 777582

 - $4 \mathrm{~K} \times 8$ Static Ram

- Video 0/P and d digit LED display
- Powereful edititing facilitities
- Comprenensive andicut (RS232, TTL, 20MA Loop, Parallel,
- DMApranessivive ind
- 2764 adaptor now available
- EP4000 ex-stock at $£ 545+$ VAT $+£ 12$ delivery

GP INDUSTRIAL ELECTRONICS LTD UNIT G, TOTNES SNDUSTATAL ESTATE TOTNES, DEVON TO9 5XL. TEL: (O803) 863360. TELEX: 42596
ww - 049 FOR FURTHER DETAILS

TV PATTERN GENERATOR

Using the ZNA 234, along with three readilyavailable CMOS i.c.s. and a ready built u.h.f. modulator, we've formed a very compact pattern generator which is simple to construct and is powered from a mains adaptor. The complete unit, housed in a proprietary case is useful for many servicing applications in the workshop and in the field.

CHOPPERS RULE O.K!

Switch mode power supplies are now the rule in colour sets, having finally ousted the thyristor regulated power supply. Servicing Snelling provides some useful guidelines.

ELEGTROVALIE

74LS00 Series

MEMORIES Prime stock
 ${ }^{\text {Antan}}$ Z80 Series

SPECIAL OFFER 25×4116 each $£ 1.30$ £ $\mathbf{£ 3} 2.50$ complete, net LOOK OUT FOR CATALOGUE 82 FREE with Practical Electronics dering
 5% on orders over 20
10%

sabtronics

An entire range of low-cost high-performance instruments DMM WITH TEMPERATURE
Test our low priced rest equipment. It measures up to the best. Compare our
specs and our prices - no-one can beat our priceperformance r tio
sabtronics
"Making Performance Affordable"

wW - 026 FOR FURTHER DETAILS

PEAK PROGRAMME AND DEVIATION MONITORING peak deviation meter

PROGRAMME AND DEVIATION CHART RECORDERS Ho orwameni AND DEVIATION CHART RECORDER

Now Monthly!

yovk COMPUTER

Following the enormous success of the first two issues, Your Computer is being published monthly. The October issue is out now and like its predecessors it is full of articles specially written for the home computer enthusiast

- Review of the Tandy Colour Computer - yet another
contestant in the low-cost computer stakes
- Games. Two articles describe how to write draughts and
chess programs for home computers.
- ZX 80/81 Software. A review of cassette programs now on
sale.
sale.
Programming the VIC 20. First part of a new series by Pet
All this, plus the calculator page, club news, answers to our problems and six pages of games and program listings to try out on your computer. For only 50p

Put in a regular order with your special introductory take out a subscription a

Barrie Electronics Lta.
3,THE MINORIES,LONDON EC 3 N 1BJ
TELEPHONE: O1-488 331688
WW - 062 FOR FURTHER DETAILS

TH SHABPME80K HASGOTIAM

3

Since its introduction the Sharp MZ-80K has proved to be one of the most successful and versatile microcomputer systems around. Sharp now have a comprehensive range o
products ready to make the powerful MZ -80K with its products ready to make the powerful MZ -80K with its rinter and Disc Drives even more adaptable.
Products include:- Universal Interface Card, Machine
comprehensive range of software. Tomprehensive range of softw
Trade mark of Digital Research Ltd.

UK RETURN OF POST MAIL ORDER SERVICE ALSO WORIDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER $£ 20$ Plays ${ }^{12}$ ", $10^{\prime \prime}$ or ${ }^{7 \prime}$ "records. Auto or Manual. A high qual: Operating Stereo Cartridge. Post ${ }^{2}$
HEAVY METAL PLINTHS Post f2 CuIt out for mosi bsi or Garraid DECCA TEAK VENEERED PUNTH. Post f 1.50 woop pint teak effect sit im. with board cut for B.S.P. (Post EII) PIONEER and J.V.C. TEAK VENEERED PUNTH P $£ 3$ £10.50
TINTED PLASTIC COVERS
BSR SINGLE PLAYER DECKS BSR P172 RIM DRIVE OUALTYDECK OUALTY DECK \qquad small two-speed thi-fissstem with stereal for distridgo or and cueing device £15 Post £2
BATEERY ELMINATOR MAINS To 9 VOLT D.C.
DELUXE SWITCHED MODEL STABLLSED VOLTAGES $3-6.71 / 29$ volt 400 ma DC max. Universal output plug and lead. Pilot light, mains switch, polarity switch, and 77.50 . Post $65 p$.
DRILL SPEED CONTROLLER/LIGHT DIMMER KIT, Easy to Controls up to 480 Watts AC mains, E3. Post 65 p. DE LUXE MODEL READY.BUILT' 800 watts plus Photo Electric SUR Sunset "On" feature. Front plate fit
ECHO CHAMBER or REVERB Good quality unit with endStationary play heads ensure good reproduction anded by changing tape speed. Input imp: 50 k and 600 Power: 240 volts A.C. £68. Post $£ 2$. Spare tape $£ 5$
 PLASTIL AND ALBOXES INSTOCK. MANY SIZES JRRE SOCKETS - Cabie rees Socket tor cabie end ea. 15 .
£1.30. Edge Pot 5K, SP 45p.

\section*{$|$| 6 |
| :---: |
| 6 |

} $£ 6.50$ Post 65 p , NEW PANEL METERS £4 50ua 100
$1 \mathrm{ma}, 5 \mathrm{~m}$

Lighting kit 6 or $12 v 90$ pextra.	
1 ma (240° scale) $21 / 4 i n$. sq. $£ 5$	Post 65 p
RCS SOUND TOUGHT	

 This "Mit is suitab" 10 wate w r recrd AMPLIFIER KIT $£ 14$

 MAINS TRANSFORMERS

GENERAL PURPOSE LOW VOLTAG

NEW baker Star sound

RADIO COMPONENT SPECIALISTS
337 WHITEHORSE ROAD, CROYDON
Open 9-6. Closed all day Wed. Open Sat. $9-5$
 you the businessman the ideal opportunity to see how easy it is to button.
Come and see why the most important companies in Britain are now heavily involved in viewdata. Benefit from the vast experience of exribitors like British Telecom, GEC, Philips,
Granada, Rediffusion, Radio Rentals, Visionhire ITT, Bishopsgate, Centronics, Viewdata Business Systems and many others who are there to ...

Practical Computing

is just what it says -

 nd peripherals which are on the market - and why some are bette More about software. How to write it. What to look for in business sottware.
Evaluations of software packotes to Evaluations of software packages to sottware purchases.
More about applications. What can
Mon studies of the ways in which people as diverse as businessmen, manutacture and doctors are using computers in
their everyday work. One way or another it's a pretty fair
bet that there's a cony bet that there's a computer in your
future. Being used by a colleague future. Being used by a colleague as
work. On your children's Christmas list. Or in the back of your mind - just waiting to be bought - perhaps for use in your business. comes in Fore Practical Computing comes in. For only 80 y you can keep up of your children and maybe make a of your children and maybe make a
better chice when you buy your own better che
computer
Act now. Get the October issue of Practical Computing from your
newsagent or complete the coupon.

To Marketing Department, IPC Electrical-Electronic Press,
Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Please send me Practical Computing for one year. I enclose
Cheque/P.O. for $£ 110$ (U.K.). 16 (overseas) made payable to IPC Cheque/P.O. for $£ 10$
Business Press Ltd.
Name
Address

WIRELESS WORLD OCTOBER 1981

$\left\lvert\, \begin{aligned} & \text { Sole } \\ & \text { Self } \\ & \text { Sult } \\ & \text { UH1 } \\ & \text { Xut } \\ & \text { Pol } \end{aligned}\right.$		AWe can supply the above poover s.pppply at any fixed voltage between 5 V and 36 V at $5 \mathrm{~A} q 25$. \star Mullard Dual supplies. Brand new with tFARNELL Current limitod. Dimensions $7 \times 5 \times 4$ ins.
MARCONI TF995B/2 AM/FM Signal Generator. TF2500 Audio power meter 6551 SAUNDERS. $1400-1700 \mathrm{MHz}$. FM TF1066B/1. $10-470 \mathrm{MHz}$. AM /FM TF1152A/1. Power meter. 25W. 500 f50. TF1370A RC Oscillator $£ 135$.	RANK KALEE 1742 Wow \& Flutter Meter. AIRMEC 314 A Voltmeter. 300 mV (FSD)-300V: AIRMEC Wave Analysers types 853 \& 248A. for vibration testing for vibration testing, etc. HEWLETT-PACKARD 8551B/851B Spectrum Analyser. 10Mhz-40GHz HEWLETT-PACKARD tuned amp \& null detector. RADIOMETER Distortion Meter BKF6 $£ 125$.	LAMBDA POWER SUPPLIES Carriage each $£ 2.50$ extra
BECKMAN TURNS COUNTER DIALS Miniature type (22 mm diam.). Counting up to 15 turn "Helipots". Brand new with mounting instructions. Only $£ 2.50$ each		
\star COOLING FANS \& BLOWERS \star $2 \times 234^{\circ}$. 9.50 .50 if1 post) 		
		100V DC ELECTROLYTIC CAPACITORS
		* BELI HOWEX
SEALED LEAD ACID BATTERIES (75p post).		
each (+25 ppp). Type 316 above $-20 p$ ea. (pp free).		5 ranges. LED Display 1999 brand new. Special reduced price of £39, INCLUDING VAT \& P. P.

JONTHIBDRED NESYOVAIS...

*Power output is quoted in wRNS and is given for two modules off the same power supply. Higher powers can be obtained if using our
one module per PsU or if using a stabilised power supply,
NEW: We now have a completely new Hi-Fi Kit package to offer:

CK 1010 contains CPAIX, CK 1040 contain. 2×08. heatsinks, wire, etc., to make a complete 40 w/channel power amp. CS 1100 as CK 1040 but at 100 w/channel specialist Hi-Fi market. Unlike many manufacturers we acknowledge the esoteric, audible differences that smmell component/tcircuit changes can produce. massive
uur amplifiers are technically outstanding have been subjectively 'tuned' to a PRICES

completekirs

\square Crimsonikekrik

now yolican reach morenew users thanyouever knewexisted.

Office Systems is new. And it's unique. It's the first quality monthly magazine for directors, partners and senior managers who are new or Office Systems will solve their problems and Office Systems will solve their problems and English. No jargon. Office Systems will solve advertisers' problems too - with a controlled circulation of named, requested readers right from the start and a total circulation of 32,000. It will operate a reader-reply service. No wastage. No. waiting. Ad. Manager Tony Kaminski is waiting for your call.

FIRST ISSUE
OCTOBER '81
For more details contact Ad. Manager Tony Sutton, Surrey SM2 5AS Tel: 01-661 3105 ell A member of IPC Business Press Ltd

Office Systems

MIEATURE UTP TO YOUR NEEDS WIT: GROTEGE

$\mathrm{DC}-10 \mathrm{MH}$
Bandwaidth
 200ns/div to $0.25 /$ div Regulated internal timesoses ro.2s/aiv $\quad 10 \times 8$ div display Trigearing to 20 MHz
$5^{\prime \prime}$ Bright CRT
BUILT-IN COMPONENTTESTER £ 865^{*}
If your need falls between 10 MHz and 30 MHz then we can measure up to it, including battery operated models Every scope in the range is designed to meet our basic design philosophy of building in that extra benefit. The 3035 has a full 10 MHz scope specification, plus a Com active and passive components. While the 3337 is a complete 30 MHz instrument with signal delay, plus a 10 KV CRT for a bright display normally reserved for much wider bandwidth scopes.

$\mathrm{DC}-30 \mathrm{MHz}$
Bandwidth
Bandwidth
11.7ns Risotime
5 mV /div sensitivity
Signal Delay
Algebraic addition
and subtraction
YPE 3337 *U.K. LIST EXC vat

For your copy of the
Reading (0734) 86694
Cratech ingitruments Limited
5 Nimrod Way, Elgar Road, Reading, Berks. RG2 OEB

To obtain further details of any of he coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for ix months from the date of publication.
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

Postage
will be paid by Licensee

BUSINESS REPLY SERVICE
Licence No 12045
WIRELESS WORLD
Reader Enquiry Service
429 Brighton Road
South Croydon

Wireless World:

 Subscription Order FormTo become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road Haywards Heath, Sussex RH16 3DH, England

Wireless World Subscription Order Form Wireless World. October 1981 WW 170

UK subscription rates $\mathbf{1}$ year: $£ 10.00$ Overseas $\quad \mathbf{1}$ year: $£ 13.00$	USA \& Canada subscription rates

Please enter my subscription to Wireless World for 1 year
I enclose remittance value. IPC BUSINESS PRESS Ltd.

Name..
Address

BEFORE

AFTER!
PUT A SIIILE BAGK ON YOUR OLD AVOMETER

Send it now for estimate, repair or recalibration

Quick turn round on estimates/repairs

Large stocks of new AVOMETERS

Avo Sales and Service

Farnell

 InternationalFarnell International Instruments Ltd Sandbeck Way, Wetherby
West Yorkshire LS22 4DH
Tel 093763541 Telex 557294 Farist G

SCOPEX 14D-10V Vital for Video

The $74 \mathrm{D}-70 \mathrm{~V}$ is a dual trace 70 MHz oscilloscope with active TV sync separator and line selector specifically designed for the servicing and alignment of video cassette and disc recorders, colour felevision and video games.

- ActiveTV sync separator.
- $10 \mathrm{~cm} \times 8 \mathrm{~cm}$. display.
- Add and invert facility.

Probe compensation
Line selector.
Line selector.

- 2 mV sensitivity on both channels

Push button X-Y
Complete with probes

At a price of $£ 29000+$ VAT. Carriage paid UK mainland.
Ensures continued British leadership in the low cost high performance oscilloscope market.

米 An Independent British Company 楼

The Profersional Choice

Amcron ®

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughou mplification. For pow you an depend professional choice.
For further details contact the UK Industrial distributor

[^3]Features include frequency coverage to 1200 tandard, and a large, 8-digit LED display. You'll also find the 9908 demonstrates the high quality and design integrity on which Racal has built its reputation.

And that's more than a claim because we'll guarantee the whole unit for two years and the LSI chip for a lifetime. omes to quality we'll give you all the reasons for specifying the 9908.

The 9908 Universal Counter is the fines counter in the world in its class. ervice for all your customers.
That's because it's desig. Tive unrivalled versatility greand manufactured long dependable life.
For all service organizations actively involved with the repair of mobile radios, CB and Open Channel radios, VCRs, teletext colour televisions, and other video systems, the 9908 measures the widest range of frequency and time.

The Ninety-nine hundred and eight gives you every good reason forcounting on Racal-Dana.

$0.6 \times$ actual size

W. Contactless Inductive dual

,
\qquad
 Istributors appointe in: Americal Canacadronic l level sensor/alarm
Applications invited for distributorships in other countries.
FLIGHT LINK CONTROL LTD.
BRISTOW WORKS, BRISTOW ROAD WW-086 FOR FURTHER DETALLS

ANY MAKE-UP OR COPY QUERIES CONTACT BRIAN BANNISTER

01-661 3500 extension 3561

LOOKING FOR 51 WINCHESTERS?

DYSAN DISKETTES. Indisputably the best you can buy.
30,000 diskettes in stock. As well as the standard range of diskettes

\qquad a EP4000 EPRO
programmer.
Programs a wide range of EPROMs without personality cards. Video
output for editing and LED display for stand alone operation. Standard output for editing and LED display for stand alone operation. Standard
interfaces include e S232, om TTL, cassette printer and DMA In
EMULATIO MODE EP4OOO replaces your in-circuit PROMs for program development and makes changes, entries, editits simple Accessories
include Bipolar programming modules multi R ROM simulator adaptors. include Bipolar programming modules, multi t EPROM simulator adaptors,
buffer pods,
and provers. Monitors, 2764/2564 programming sate lite, printer
EP 4000 programmer/simulator $£ 545.00$ P4000 production programmer
£545.00 (9 sockets)
Eraser $£ 78.00$ Monitor $£ 88.00$ Printer $£ 395.00$
OASIS 820-a revolutionary multiperipheral exerciser in a
briefcase that tests virtually any computer OASIS 820 - a revolutionary multiperipheral exerciser If you service or maintain a range of computer peripherals OASIS 820 is
the cost-effective and logical solution to your control and exercising the cost-effective and logical solution to your control and exercising
problems. OASIS 820 uses firm ware application Peripheral ALgorithm
 peripherals. Each briefcase will hold several PALMS and interface cables
oo that an engineer can carry, in one hand, allot the peripheral driving which he needs; the cost perfunction

The Revolutionary New 8" Thinline
Tendon's revolutionary new 8 inch floppy disc drive is only half the
thickness of earlier drives so that you can pack twice the slow thickness of earlier drives so that you can pack twice the storage intro the
same space. In addition a new method of construction allows the drive to
constantly compensate for change in temperature and same space. In addition a new method of construction allows the drive to
constantly compensate for changeses in temperature and umimidyty so that
real capacities of up to 4.M. bytes are now achievable in the usual
finch floppy disc drive envelope size. The TM800 series drives require only D.C.
power (Iv and 24v) so that they run cool and no changing of pulleys and belts is needed for manufacturers who want to ship products abroad. Our new low profile packaging, designed and built in the U.K., complete
with power supplies makes incorporation into, or addition to, existing

systems simple APPLE II \& TRS-80 COMPATIBLE MINI FLOPPIES | APPLE II \& TRS-80 COMPATIBLE MI |
| :--- |
| This is our popular TM 100 series mini floppy | This is our popular TM 100 series mini floppy...

Tendon make 40,00 of these a month. Available as bare drives and
packaged in single and dual cabinets with power supplies Capacities prockaged in single and dual cabinets. with power supplies. Capacities
from 100 . bytes to 1 Mbyte per drive! Compatible with TTTS -80 , Video Genie, SUPRRBRAN, Horizon, Zenith, SWTPT,., feat h whit etc., and supplied
as the standard drive with many of these system. TRS-80 compatible (in cabinet with
power supply) (

$$
\begin{array}{ll}
\text { DUAL UNITS } & 40 \text { track } \\
80
\end{array}
$$

SINGLE UNITS 40 track

APPLE Controller board DOS 3.3
Prices exclude VAT and delivery charges.

SPARE PARTS SERVICE AND TRAINING

We carry a complete stock of emergency spare parts for Tendon disc
drives and we can fix any drive on a short urr-round. All final testing is
carried out an an in.hous ate carried out on an in-house ATE drive testing system which can run 73
separate diagnostic programs to ensure that your drive leaves us in absolute first class condition. A less complex caliliration service is also
available. Full product support exists for genuine OEM customers and available. Full product support exists for genuine OEM customers and
un single day training courses at regular intervals. Call our service run single day training courses at regular interval
engineering department for further information.
We carry the full range of Dyson alignment diskettes and a staff of
Sales Engineers will be pleased to help you with any queries.

E594.00
£219.00
$£ 289.00$ -

HAL Computers Limited
57 Woodham Lane New Haw Weybridge Surrey KT 15 3ND
Tekphone: Weybridge 48346/7

Treat just what yavic looking for....
 Our new Micro Winchester gives you from 5 to 20 M. bytes of

 hard disc storage from as little as $£ 1425.00$ready-to-go, plug-in system with software. ready-to-go, plug-in system with software.
Floppies and larger more expensive hard discs are no Floppies and larger more expensive hard discs are no
match for our new drives which pack enough data to run serious business or technical applications software serious business or technical applications so
into a mini-floppy size $5^{1 / 4}$ " unit. Your data is protected in the sealed enclosure making diskette handling problems a thing of the past. The disc is fast - 40 times faster transfer rate than a mini-floppy replacement or an enhancement.

Controllerbility

Our controller comes with a range of adaptors to plug on to most popular micros and there are more adaptors on the way. It
supports two discs with ease and while others are struggling with supports two discs with ease and while others are struggling with correction circuits, we use a high performance digital design which correction circuits, we use a nigh performance digital design which t so sell digital data separator cards to OEMs. Real time and multitasking applications benefit from the controller's interrupt capability and macro level command structure and the OEM version features a simple software interface and CPIM 2.2 BIOS with extensive development aids. The software comes on either $51 / 4$ " or 8 " diskettes together with Boot PROMs.

Service and Support
If you are impressed with the specifications so far, there is more to come. Our packaged sub-systems are assembled in-house and they carry a full one year parts and labour
warranty. Our controllers are built completely from TTL
warranty. Our controllers are built completely from
logic - there are no fancy chips - so we can fix them if
they ever break down. Dozens of floppy disc drives go
they ever through our workshops every month and we are well

267 \& 270 ACTON LANE, LONDON W4 5DG. Telephone: $\mathbf{0 1 - 7 4 7 1 5 5 5}$

STABILISED POWER SUPPLIES
 100 mA . Remote sensing, curre
$\times 38 \mathrm{~mm}$, with manual. $£ 12$
 mote sensing. $(188 \times 96 \times 93 \mathrm{~mm})$. Two versions available
15 V at 2 A or 30 V at 1 A . $£ 15$ ea. COUTANT OA2: Op. amp, psu, $120 / 240 \mathrm{~V}$ IP. Dual Op. $12-15 \mathrm{~V}$
at 100 mA . ($138 \times 80 \times 45 \mathrm{~mm}$). $£ 12$ ea. or 2 for $£ 22$. BRANDENBURG Photomultiplier PSU. 19in. rack mounting. Metered, current limit protection
$374300 \mathrm{~V}-1 \mathrm{KV}$ at 5 mA .
 PIONEER MAGNETICS POWER SUPPLIES. .5 V 150 amp , output, input 115 vac. (SWitchmode). Price $£ 120$ each.
SPECIAL OFFR. 10 MFFD 500 V ECC 20 p ea.. 1000 MFD 16 v
Mullard 35 p ea. WIMA polyester $10 \% 40 \mathrm{p}$ ea. Large quantities available. ELECTROLYTIC CAPACTORS. Very large stockholding.
Mostly ITT EN1212m EN1235 types. Pease send for our lectrolytic clist, e.g. $9.2220 / 50 \mathrm{VA}, 220 / 25 \mathrm{R}$, 470/25R, $4700 / 25 A, 470 / 50$ A, $2200 / 100$ CAN.
CAPACITORS-DISC CERAMIC
Over 2 million now in stock, mostly ITT. Many high-voltage

4 MILLION

I.T.T. ELECTROLYTICS NEW

 AND BOXED NOW IN STOCKEN 1212 AXIAL EN 1235 RADIAL The whole range available at unbeatable prices. Send for List PYE HEAD CLEANING CAS-
SETTES. Brand new or boxed, 50, ${ }^{\text {50a. }}$.
CASSETTE DECK: with ste reo heads, mechanicallycomplete, but with no
electronics. Smart black electronics. Smart black
modern finish.
We have very large quantiWe have very large quanti-
ties of Disc Ceramics High
V lita
 our Disc Ceramic Stock Lists.
PIHER PRESTS PIHER PRESETS
ery large stocks, PT10,
Plas. PT15 enclosed types. Please
send for our preset list. Most
values $100 \mathrm{R}-5 \mathrm{~m}$ HEAVY DUTY
 49 mm Fascia. tities of low profile GOLD
PLATED I.C. sockets manu-

D TO A CONVERTERS

 Ker's sack.
SPECIAL OFFER PRICE: $£ 20$

ANSFORMERS
$13 \mathrm{~V}+6.5 \mathrm{~V} \mathrm{Sec}$
0.120 .1296 VA 15 V 100 mA
$0 / 12-0 / 12$ 9-0.9V 1 Amp
$12.0 .12 V$
15 Amp
150 $15 V 100 \mathrm{~mA}$
17 V 300 mA 17 V 300 mA
$30,24,20,15,1284$ 6.3V 1.5 Amp
$6-0.6 \mathrm{~V} 1.5 \mathrm{Amp}$
${ }^{2}$ $20.0-20.400 \mathrm{~mA}$
$22-0.2250 \mathrm{~mA}$ 24 V 100 mA

Capacitor type 36D by Spra-
gue $\ddagger 3.50$ each. Brand new
and boxed. gue $£ 3.50$ each. Brand new
and boxed. XLR Connectors
Switchcraft
always in stock. Discounts SWitchcraft XLR Connectors
always in stock. Discounts
on quantity on quantity.
ALUMINIUM BOXES AB7 $134 \times 64 \times 38 \mathrm{~mm}$
AB8 $102 \times 102 \times 38 \mathrm{~mm}$ ABB $102 \times 10 \times 2 \times 38 \mathrm{~mm}$
AB9 $102 \times 57 \times 38 \mathrm{~mm}$. AB9 $102 \times 57 \times 38 \mathrm{~mm}$
AB10 $102 \times 13 \times 38 \mathrm{~mm}$
AB11 $102 \times 64 \times 51 \mathrm{~mm}$ ABB11 $10 \times 6 \times 1$
AB12 76×51
AB13 152×12 AB13 152×1
AB4 178×1
AB15 203x

AB ${ }_{25 \mathrm{~V}}^{24 \mathrm{~V}}+6.2 \mathrm{~V}$ Sec 1.6 Amp 30, 24, 20, 15, 122 Am. | 9-0.-9V 2 Amp |
| :--- |
| $12 V 2 \mathrm{mmp}$ | 9.0.2V 2 Amp

20-0.20V 2 Am $20-0-20 \mathrm{~V} 2 \mathrm{Amp}$
$30-\mathrm{O}-30 \mathrm{Amp}$
30 Amp $30 \vee 25 \mathrm{~mA}$
$30-250-0-2501$
$0-2-4-6-8-105 \mathrm{~A}$

4-WAY DPDT AND DPDT DIL SWITCHES, 5 -WA ERG Components and CTS.
Gold contacts 80p ea. Brand
new and new and boxed.
BUZZERS, 6 v and $12 \mathrm{v}, 50 \mathrm{p}$ U. W IRE ENDED NEONS
£20|£1,000. SPECIAL OFFER. Mini-toggle switch by C. \& K., 3 Pc/o
Long dolly or short, 50 ea RESISTORS: Over 2 million in stock at last count.
CARBON FLLM $1 / 4 W$. 5% E12 range 110-12M.
2 2ea. E1/100, f6.50/1,000. values in $E 24$ range, $1 / 4-2 \mathrm{~W} 5$, 2or 1%. A few values in 0.1%
tolerance available. WRE WOUND. ORI-100K 3-
W00W A selection of mains 200W. A selection of mains
droppers available. Good selection of metal clad high
powertyon power types.
ROTARY SWITCHES Over 30 different types avail
from 45 p able.
3-pin Plug. Free hanging
f1.20
 D3F 3 -pin Socket. Female
chassis mounting with lock D3M 3-pin Socket. Male $\underset{10,000 u F / 100 \mathrm{~V} \text { Electrolytic }}{\text { Chassis mountic }}$

discount on quantity. One

 off prices as follows:8 pin -9 p.
fin PIN-18p;
PN-22p;
PN-30p
CANNON PN-30p 28 PIN-26p; ${ }^{24} 0$
CANNO type or Souvri sockets, D DA15S 60p ea. Also Canno Welug, brand new, 60p ea WEL WYN STRAIN GAUGE
Precision Micro-Mea surements). RomulusMliche
gan tye MA-09-50B4-350
Our price $£ 1.25$ ea. List pric Our price $£ 1.25$ ea. List price
£3.85. Large quantities avail${ }^{3} \mathbf{3}^{4}, 15$ e. 15 Turn Cermet Trimpot 100 kJ . 1 off protice, 20p. By
Beckman \& A.B. Full Beckrman \& A.B. Full range
available. REDPOINT HEATSINK, Type TV4 15 p ea. 1 off ofre.
Discount on quantity. Discount on quantity.
We have the following WelWe have the following wel
wyn. 1\% Resistors available,
$2 \mathrm{~K}, 3 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 30 \mathrm{~K}, 1 \mathrm{Me}$ 2K. $\mathrm{KK}, 10 \mathrm{~K}, 20 \mathrm{~K}, 30 \mathrm{~K}, 1$ Meg.
Price 25 p ea. Type 4802 .

Putyour finger on the Electronics industry
Dial Industry will need no introduction to advertisers who had the sense to book into volume 1 covering mechanical engineering. Now's your opportunity to book into the next volume in the series which covers the huge
growth industry of electronics. Like its companion volume, it akes you to no less than $40,000 \mathrm{UK}$ buyers.

The Dial Industry series is a new concept in industrial directories. It is specially designed for buyers across British Industry - and the advertisers who need fo reach them. Simple and easy to use will act as your solesman all the year round. Just look at the sectors your advertising will reach top buyers and specifiers in all of them. ELECTRICAL, ELECTRONIC • COMPUTER \& DATA PROCESSING • MEASURING, ANALYSING \& CONTROLLING INSTRUMENTS • WATCHES, CLOCKS AND PHOTOGRAPHIC EQUIPMENT AND JEWELLERY
How does Dial Industry work? Just like a classified telephone directory only better! It lists firms and offices along with addresses, postal codes, stiv codes and telephone numbers. Entries are classified by products an to named individuals, carefully selected because they are your potential customers.
П 1 万BUSINESS PRESS INFORMATION SERVICES LTD
DadD ASSOCIATION OF BRITISH
Dial Industry, IPC Business Press Information Services Ltd., Windsor Court, East Grinstead House, East Grinstead, West Sussex RH19 1XA.

SIEMENS

WW - 036 FOR FURTHER DETAILS

P

27 HIGH STREET, EGHAM, SURREY
mILREBUTE LTD.

A RAPID WAY TO CONVERT SOURCE

 PROGRAMS TO EPROMS
$\star \star \star \star \star \star 832$ EPROM PROGRAMMER $\star \star \star \star \star \star$

Programs 2708/2716 (TMS and Intell)/2516/2532/2732/2732A RS232 connection to host computer or terminal Download. HEX file s from processor to 832 orma program EPROM
Simple command structure to inspect, , modify, verify, find partiSimple command structure to inspect, modify, verify, find parti-
cular bytes, program and compare EPROMS
$\star \star \star \star \star \star$ DEVELOPMENT SOFTWARE FOR USE WITH PROGRAMMER $\star \star \star \star \star \star \star$ 8048/9 Cross Assembler and Simulator (under CP/M)
M6800 Cross Assembler and Simulator (under CP/M) EXPAND YOUR PROCESSOR'S CAPABILITY

$\star \star \star \star \star$ MICROBYTE 421 MULTIPLEXER $\star \star \star \star \star$

Link up to 4 peripherals to your procèssor Simple protocol
ach peripheral independently configurable
Software options for non-standard requirements
All prices exclusive of V.A.T.
One-year guarantee on all product

TEST EQUIPMENT BARGAINS

NEW EQUIPMENT
$\begin{aligned} & \text { All prices plus 15\% V.A.T } \\ & \text { Add f5 per item coverage }\end{aligned}$
time base
94 Alfriston Gardens, Sholing, Southampton, Hants
Access and Barclaycard Orders Welcome

amplivox

The first name in hearing

The New head set and
Series offers

The last word in communication

Amplivox ultra lightweight stethoscopic style or single piece ' U ' shaped microphone model AHRM with a choice of magnetic or dynamic
quality high sensitivity for good microphones. This APRS range is ideal for ightweight and $\begin{gathered}\text { speech transmission. Its telephone operators, hospital radios, } \\ \text { unobtrusive - helps airport communications }\end{gathered}$ operators feel better, work better. equipment for each particular operation. e Amplivox AHRM Series can replace For further information on these or on the
the majority
with plug connections
compatible with
exchanges. Amplivox
head sets and is fully induction systems, hearing
new range of lig offer also defenders, hearing aids, and the mona exclusive 'Amplivox Audiocups' monaural post the coupon or phone

086755422 (Telex 837550)

Pleasesend me written details \square Please ask yourtechnical rep to call \square
My special interests are \qquad Address

Post to: Âmplivox Ltd., P.O. Box 105, Kidlington, Oxford, England. OX5 ILJ.

Appointments

DEVELOPMENT/TEST ENGINEER BROADCAST TELEVISION

Croma Research Ltd is a young company associated with an
established manufacturer of broadcast equipment. We now re. quire a Development Test Engineer to work on our range of high quality colour monitors.
You will probably be aged 24 to 26 but most certainly must be
qualified to HND/degree level and have a minimum of three years' relevant experience. You must be prepared to be involved
initially in test work which could ind initially in test work which could include the formulation of tes
procedures. As the company grows you will become involve procedures. As the company grows you will become involved
full time in development of monitors and other TV broadcast equipment.
Salary offer
Salary offered will be very compeitive. We are situated in an
attractive part of north Hampshire within easy reach of several attractive part of no
other major towns.
Please either request an application form or send us a full c.v.
adddressed to our personnel consultant, M. D. Comber, at his addressed to
private office -

9A High Street, Andover, Hants SP10 1LJ. Tel: 0264-64495

Engineering Manager-Communications

 £10,000 p.a. + carThe lob
We are an internationali, long-established company recognised as market leaders in industrial secuirity systems.
Due exto expansion we now seek an Engineering Manager for our - Radio Communications Network whose prime responsibility would be to ensure the efficient functioning of the Radio Network and support systems. Other duties would include on and off the
iob training which would include attending training seminars. The Requirements
You would need an HNC (Electrical/Electronic level or equivalent)
and have a comprehensive knowldgen and have a comprehensive knowledge of radio systems (Pye experience preferred. You should also be aware of new develop-
ments within radio communications technology. You would need ments wethin radio communicationstechnology. You would need
to be available to travel throughout the UK and should ideally be aged between $25-40$ although exceptional candidates outside that bracket w
The Benefits
This sis an excellent opportunity to join a fast-expanding division with first class company benefits, which include relocation assistance where appropriate, excellent sickness and pension schemes, travelling expenses and company car.
If you are interested pleas.

If you are interested, please apply in writing,
in the first instance, to: Mr. R.K. Davies Securicor Ltd (Communications Divisio 24 Gillingham Street, London SWIVIHZ

Broadcast Studio Equipment Installation and Service Engineers

Go places with Rank Cintel.

If you are a qualified engineer, experienced in capital electronics, there is a world of opportunities awaiting you at Rank Cintel. Cintel telecine equipment is used throughout the world by television production and broadcasting companies. Following a 3-6 month product training period, you can expect to be working out of the UK for up to 6 months of the year, assignments taking anything from a couple of days to two months or more.

As well as the necessary practical experience, therefore, you should be a resilient self-starter able to respond to the daily challenge of this highly
rewarding position.
Anium can potential in the region of $£ 12 \mathrm{~K}$ per annum including overseas expect from an internationally reco prosped leader in high technology systems Applications in the first instance to Ian Waterhouse, Divisional Personnel Manager.

AUDIO ENGINEERS

We are a leading supplier of Audio Equipment to the Broadcasting Industry, ranging from high-quality ampli-
fiers to complete television studio communications fiers to complete celevision expansion we now have systems.

PROJECT ENGINEER

We require an engineer to undertake the detailed design of projects utilising the company's standard building
blocks. This involves all aspects of work from customer liaison through to handbook preparation. The ideal candidate would be qualified to at least .N.
experience of the professional Audio Industry.
ASSISTANT ENGINEER Salary Neg. This position is suitable to the less experienced engineer, who will, initially, work under supervision in the projects

TEST ENGINEER
c. $£ 6000$

Responsible for testing and faultfinding our complete range of equipment. A good working knowledge of audio range of equipment. A good wortan than formal qualifications although an H.N.C. or equivalent would be an advantage,
For an application form, please apply to Alan Giles at
PHILIP DRAKE ELECTRONICS 23 REDAN PLACE, LONDON, W2 4SA PHONE: 01-221 1476

IRAM

a Franco-German Institute for Radioastronomy at mm-wavelengths based in Grenoble (France) is interested in employing an:

ELECTRONICS ENGINEER

with experience in design and construction of digital frequency synthesis circuitry involving phase-lock techniques
Candidates with relevant experience should request an application form and return it before October 13, 1981, to:

IRAM

Administration
Boite Postale 391 38017 GRENOBLE CEDEX

France
Reference VC/16/LW

Electronics Design

Using State-of-the-Art Technology Up to £14,000 p.a.
Multitone is an international company engaged in radio paging and associated communications equipment. Rapidly expanding, not only in size but also into new technological areas, we now require additional high-calibre design expertise at
ll levels. ill levels.

We'd like to talk to ny of the following areas:

1. R.F. Receiver Design

2. Custom

I.C.S./Hybrids

We'll tell you how the right people can earn up to 14,000 p.a. We'll explain how there are openings at our out line the additional advantages on offer to those who join us ir London including flexible working hours and the possibility of local authority housing.

Why not telephone our write to them the address below write to them at the adaress below. Multitone Electronics P.L.C 6-28, Underwood Street, ondon, N1 7JT. Tel: 01-253 7611.

TOP JOBS IN ELECTRONICS Posts in Computers, Medical,
Comms, etc. ONC to Ph. D. Free Comms,
Corvice.
Phon

Phone: 01-906 025

FIELD MAINTENANCE ENGINEER

 Juliana's Sound Services Ltd. are the world leaders in the supply of highquality discotheque sound
companies. Due to expund ind linhting systims to thetrational hotel
 lirst-class maintenat
East and Scandinavia.
Based in London, the position necessitates extensive foreign travel for a
great doal of the year The
under 30 years
Remuneration will be at least $£ 10,000$ p.a. plus company car and profit
sharing.
Please apply, in writing, to David Payne, Managing Director Juliana's
Sound Services Ltd, 7 Kensington Church, Court, London W8 4 SP.

RECESSION - BOTTOMING OUT?

We don't know the answer,
very
chell
curn
RF RECEVER DESIGNERS. To create a newi generation of radio-paging equipmen
 PRINCIPAL ENGINEER - ELECTRO-OPTICS. For research on novel fibre optic signal
processing. Salary good but confidential.Hants.
 buply technology. To 110,000 . Berks.
DESIIN ENGINEER for mini commuters and associated peripherals Three vears TECHNCIANS. HNC Ievel for complex development on RF and mirowave commu-
nications equipment inclu ding digital controls. To 88,500 . Berks.

 or further details, contact:
Charles Airey Associates $13 / 16$ Jacob's Well Mews, George Street, London W1H SPD. Tal: 01-486 9607

SULTANATE OF OMAN VTR MAINTENANCE ENGINEER VACANCIES

Oman TV has a number of vacancies for experienced VTR maintenance engineers to work on Ampex videotape recording machines.
Applicants should be qualified to HNC level or equivalent and have not less than six years' maintenance experience on Ampex videotape recording machines with particular reference to the VR 1200B. Experience on 1 " "C" format would be advantageous.
Salaries, which are paid in rials Omani, are fully remittable and tax-free and range from $£ 1,100$ to $£ 1,300$ sterling per month upwards.
Married accommodation is provided together with free air passage at beginning and end of contract for family. Air tickets are also provided for leave after the first year of service.
Applicants should write stating age, nationality, qualifications and full details of experience to:

Ministry of Information and Youth Affairs, Post Box 600, Miuscat, Sultanate of Oman, marking the envelope "Technical Office" in top left-hand corner.

IRAM
Franco-German Institute for Radioastronomy at mm -wavelengths based in Grenoble (France) is interested in employing an:

ELECTRONICS ENGINEER

with experience in design and construction of microwave phase-lock loops and phase drift monitoring systems of high accuracy

Candidates with relevant experience should request an application form and return it before October 23, 1981, to

IRAM

Administration
Boite Postale 391 38017 GRENOBLE CEDEX

France
Reference VC/17/LW

LABORATORY ENGINEERS/ TECHNICIANS

BBC Engineering Designs Department requires Laboratory Engneers/Technicians, male or female, in Central London premises to assist engineers in the development, construction LABORATORY TECHNICIANS, who will probably be in their 20's will have a keen interest and a minimum of two years' practical experience of electronics. They will have at least ONC
or C. \& G. Part 2 or equivalent. Salary according to or C. \& G. Part 2 or equivalent. Salary according to
qualifications and experience in the range $£ 5074-55982$ More experienced technicians may be appointed to a salary scale in the range of $\mathrm{E} 6094-\mathrm{k} 6569$ p.a.
LABORATORY ENGINEERS, will have had several years'
experience of electronic development work and wil have an appropriate Degree or HNC, Higher T.E.C. or C. \& G. Full Technological Certificate in Telecommunications or Electrical
Technicians (271 or 281). Salary in the range $£ 6954-£ 7509$ Technicians (271 or 281). Salary in the range $£ 6954- \pm 7509$ progressing to £9882. Pensionabie posts. Re-localon exps.
considered.
Requests for application form to The Engineering Recruitmen
Officer, BBC, Broadcasting House, London, W1A 1AA uoting reference 81.E.4034/WW. For further informatio please contact Mr. I. Millar on 580-4468 Ext. 4593.

Appointments
WIRELESS WORLD OCTOBER 1981

POOLE GENERAL HOSPITAL

LONGFLEET ROAD
POOLE, DORSET, BH15 2JB

SENIOR ELECTRONICS TECHNICIAN

required. The duties will include providing a repair and
maintenance service for a wide range of electro-medical maintenance service for a wide range of electro-medica
equipment with the East Dorset Health District. Applicants should have a broad practical experience in the maintenance of electronic equipment and in fault
finding, and should possess either O.N.C./H.N.C. or C. \& finding, and should possess either O.N.C./.A.N.C. or C. \&
G. Full Technicians Certificate in Electronics. Salary on
the the scale $£ 5223$ - $\mathrm{f6750}$ p.a. (back-dated pay award
pending). Hours of duty 37 per Monday to Friday working pending). Hours of duty 37 per Monday to Friday w
week plus "on-call" commitment when required.

Application form and job description from Sector Per-
sonnel Officer by September 30 .

ELECTRONIC SERVICE ENGINEERSS

Founded in 1936, Marconi Instruments today employs some 2,000 people in the design, development production and marketing of its advanced communications test equipment and A.T.E

To meet the challenges of tomorrow's markets, we to turn new ideas into fully operational equipment we to turn new ideas into fully operational equipment
If you would like to develop your potential in the exciting future of Europe's leading test equipment specialist, complete the coupon and send it to us at the address below
marcon

Return this coupon to John Prodger, Marconi Instruments Limited,
Freepost, St. Albans, Hertfordshire, AL4 OBR. Telephone: St. Albans 59292

ACRON VIDEO
Due to continued expansion at our modern premises in
QUALITY CONTROL ENGINEER
is required to handie all aspects of check-out and inspection
including goods inwards. Applicants will probably be aged between $25-30$ years, 0 NC. Aevel with preferably 5 years' exper-
the ience in a QC environment. Some krowledge of professional
broadcast TV equipment is desirable. Applications should be addressed to Mr. R. Browning, Acron
Video, Unit 3 , Lovelace Road, Bracknell RG12 4YT. Tel: Bracknell 55625 .

THE RANK PHICON VIDEO GROUP CHIEF ENGINEER within their Commercial/Industrial video duplication faci Applicants should have maintenance experience in $2^{\prime \prime}+1^{\prime \prime}$
V.P.Rs Rank Citadel Mark $11 T / K$ and ancillary video Ex.i.s.len Renk terms and conditions. Forc. addilitional information
contact Nick Watkins on $01-580$. 761 .

AUDIO \& VIDEO LTD 48 Charlotte Street, London W1

Develop your potential in our future

tracerlas service

ROYAL MIITARY COLLEGE OF SCIENCE
SHRIVENHAM, SWINDON, WILTSHIRE DEPARTMENT OF ELECTRICAL AND ELECTRONIC

INTEGRATED MILLIMETRE WAVE ANTENNAS
AND COMPONENTS
Applications are invited for a research post to carry out
interesting experimental and development work on a new Applications are invited for a research post to carry out
interesting experimental and development work on anew
range of millimetre wave integrated anten range of millimetre wave integrated antennas and cir-
cuits. The post is sponsored for an initial period of two cuits. The post is sponsored for an initial pertiod of two years wossess a goood honours degree or equivivalent quals
must
ification in Physics, Engineering or Mathematics and have fication in Physics, Engineering or Mathematics and have
the ability to carry out experimental work. The post offers the abily to carry out exper min experience in a new and
an ideal opportunity to gain
expanding field with an active research group; study for a expanding tield with an active resea
higher degree will be encouraged.
The successful candidate will be appointed at the grade of
Research Scientist or Higher Research Scientist deResearch Scientist or Higher Research S
pending upon qualifications and experience.
Salary scales: Research Scientist $£ 4,809-\mathrm{f} 6,480$; Higher
Research Scientist (minimum of two years' Salary scales: Research scientist $£ 4,809-\epsilon \in, 480$, Higher
Research Scientist (minimum of two years' postgraduate
experience) $£ 6,055-\mathrm{E} 7,999$ (scales currently under re-
view).
Accommodation for a single person may be available in a
Hall of Residence and there is a possibility of housing for Hall of Residence and
Application forms and further information may be obtained from the Civilian Admin. OOffice, Royal Military College of Science, Shrivenham, Swindon, Wilts. SN6
BLA. Telephone (0793) 782551 Ext. 421 . Please quote reference A . 120/1/81. Closing date for applications 8 Octo-
ber, 1981.

ELECTRONICS TECHNICIAN/ PRODUCTION/TEST

LINTECH INSTRUMENTS LTD. manufactures and sells Worldawide electron beam equipment to the semiconductor in
dustry. Our Scanning Electron Beam Annealer is used in iC manufacture. Our Sampling SEM systems are used in VLSS
circuit testing. We are the leading world supplier of installed systems.
A small company, looking forward to expansion, we urgently need an eectronics technician with energy, who aims for man-
agement in the medium term. Qualifications to HNC at least.
Age from 25 to 35 . Age from 25 to 3
Initial responsibilities
prototype/production assembly and test of fast pulse, linear
and high voltage electronics (some P.C. layout work) joint responsibility for system commissioning and final test co-ordination of component stores and purchasing. Opportu-
nity for international travel will occur.' Apply with curriculum vitae to Dr. G. S. Plows, Lintech Instru-
ments Ltd., Cambridge Science Park, Cambridge CB4 4BN.

B.B.C.
ELECTRONIC
ENGINEERS

The B.B.C. requires experienced
EEectronic. n ngineers to
Vaintain
Videotape equipment in its West
 pattern
In addition to possessing a degree
in Electrical Engineering, Ilectron-
nem
 and Guilds full Technological cer-
tificate in Telecomms, applicants,
male or female, must have a thorough understanding of Television
Brapodasting ssstems and be ex
perience in the maintenance of
Videntad equipment.

DIGITAL EXPERIENCE? FIELD SUPPORT
R\&DAND SALES VACANCIES IN COMPUTERS
NC, COMMS. MEDICAL
VIDEO, ETC.
For free ereistration
045383836
$0-290$
0.267
LOGEX

ELECTROMIES PERSOINEL
 SALES - SERVICE - TEST DESIGN - RESEARCH

 ew employers.A specialist employment agency in the heart of Southern England's golden triangle is just waiting to interface you, the career-minded person, with
prospective new employers.

To find out how we can help why not give us a call at our office in Eton.
Classified

Senior Quality Assurance Engineer

Slough

Sony products are amongst the most sophisticated available. Our advanced
technology keeps us ahead of the field in domestic and industrial audio visual technology keeps us ahead of the field in domestic and industrial audio visual people, because it is to them that we owe our continued success. We therefore take great care of our staff and do everything possible to help them enjoy their work and
receive the best rewards.

Currently, we are seeking to recruit a senior Quality Assurance Engineer to lead a
small team of engineers in this vital department. Ideally, we are looking for someone who has had at least five years experience as an engineer working on fault finding, with a City and Guilds radio/TV qualification, plus colour endorsement. We can offer you a secure future with ample scope for advancement, plus an excellent
salary together with the benefits one would expect of a large successful company. If you feel you have the necessary qualifications we would be delighted to hear from If you feel you have the necessary qualifications we would be delighted to hear from
you. Please write giving full details of your career to date, to Miss Linda Burke, Personnel Officer, Sony (UK) Limited , Pyreare House,
Sunbury on Thames; Middlesex TW16 7AT.

1. DESIGN ENGINEER
to workon Capital R.S.
Microwave Equipment to m.
Mi.

ENGINEER

2. ANALOGUE DESIGN ENGINEER

UNIVERSITY COLLEGE LONDON
 ELECTRONICS TECHNICIAN

required to assist in the constr
tion, modification and maint
tion,
anse
anser
carie
 partment. The work is varied De-
interesting and covers a wide
range of an

on 01-874 7281. (111

SONY

ARTICLES FOR SALE

have you seen the green cat?

MYERS, Dopt. W.W., 12 Harper Strreet, Loeds, LS2 TEA - Tol: 452045

Avantek GPD 400 series modular amplifiers ex-stock sale

NEW LOWER PRICES

CONSTRUCTION Thin Fill circults
Cascadidiememplifer modules
TO-TO-12 package
Avantek in-house transistors APPLICATIONS APFLI
RF \& Stages in Receivers
Preamplifirs, cablo drivers, gain
elements
 and RF distribution networ
R f feeduback oops
Isolation \& butfer stages (W) Walmore

WIRELESS WORLD OCTOBER 1981

SERVICES
CIRCOLEC THE COMPLETE ELECTRONIIC MANUFACTURING SERVICE
We also provide a test, repair and modification service to suit your. individual requirement.

OCT CONSUMER NOTICE

Early models of Bremi BRS 27 power supplies imported by OCT in common with other currently imported makes
were designed for the continental market and therefore did not contain the internal protection and three-core flex Standard
OCT have accepted all the recommendations of the BSI
(British Standards linstitution) and all Bremi power (Brititsh Standards Institution) and al Bremi power
supplies now on sale are made to this higher specification. OCT are the s
power supply.
Consumers should beware of Bremi power supplies that
meet the continental specification which may be availmeet the continental specification which may be avail able from other importers.

CAPACITY AVAILABLE	
I.H.S. SYSTEMS	PCB ASSEMBLY
Due to expansion of our manutac	APACITY AVAILABL
tur $\begin{aligned} & \text { turing facilites we are able to under.- } \\ & \text { take assembly and testing of circuit }\end{aligned}$	Lew or high volume, single
boards or completet units in addition to contract develoment.	
We can produce, test and calibrate to	Using the Zevaron flow
a high standard digital enalogue and RF equipment in batches of tens to	on ine, and comp. facilities available.
Telephone to arrange for one of our	Find out how we can
engineers to call and discuss your requirements, or send full details for a	production. Phone or write, We will be pleased to call on you and discuss your requirements.
TEL. 01-253 4562	TW ELECTRONICS LTD.
or reply to Box No. wiw ${ }^{8237}(82377)$	
 and probypp productom relcome. 	tract assemblers and wirers to ustry
	Eatch production wring and
	assombly to sample or drawngs.
	CAPACITY AVAILABLE Electronic/
	(tions and malintenance. Contro-
UIPMENT WANTED	
TO ALL MANUFACTURERS *	
AND WHOLESALERS	
BROADFIELDS \&	
MAYCO DISPOSALS	
will pay you top prices for any large stocks of surplus or redundant components which you may wish to clear. W the United Kingdom.	_ASSI
Tolephone No: $0,14450749,44527$ After office hours 9587624	T0
(9123)	
SERVICES	OPHELIA
	SMITH
	0
	01-661303
Bracknell, Berks. Tel: Bracknoii EO23. graze.	

INDEX TO ADVERTISERS SEPTEMBER

Appointments Vacant Advertisements appear on pages 126-135

Models XS-BP (25 watt) and CS-BP (17 watt) have moulded-on safety plugs, 'unbreakable' handies and detachable hooks-cum-finger-protectors.
Long life iron and nickel plated bits, easily interchanged, slide on or off stainless steel shafts which enclose the heating elements for maximum efficiency of heat transfer. Both models available for $240 \mathrm{v}, 115 \mathrm{v}, 24 \mathrm{v}$ or 12 volt. R.S.P. $£ 5.30$ plus V.A.T.

ANTEX LIMITED, Mayflower House, Plymouth, Devon PL1 1BR. Telephone: (0752) 667377.

[^0]: Also available from Electroplan

[^1]: WW - 064 FOR FURTHER DETALLS

[^2]: .

[^3]: ww - 079 FOR FURTHER DETALLS

